Shadowed-set-based three-way clustering methods: An investigation of new optimization-based principles

聚类分析 计算机科学 数据挖掘 模糊聚类 杠杆(统计) 度量(数据仓库) 集合(抽象数据类型) 约束聚类 人工智能 相似性度量 模糊逻辑 机器学习 CURE数据聚类算法 程序设计语言
作者
Tamunokuro Opubo William-West,Armand F. Donfack Kana,Musa Adeku Ibrahim
出处
期刊:Information Sciences [Elsevier]
卷期号:591: 1-24 被引量:8
标识
DOI:10.1016/j.ins.2022.01.018
摘要

Shadowed set approximation form a cornerstone for the explainable decision advice provided by shadowed C means (SCM) clustering in unsupervised learning. Due to its advantage of managing uncertainty in fuzzy clustering, it has been used in data classification. Existing SCM clustering method requires the overall amount of uncertainty associated with a fuzzy cluster ck to be preserved in its boundary region. This requirement may suffer serious risk of having high number of unclassified patterns, especially when the uncertainty in ck is very high. Consequently, the ensuing clustering may not adequately maximize the inter-cluster separation necessary for achieving optimum cluster validity results. To tackle this problem, this paper considers new SCM clustering methods arising from (i) trade-off between uncertain and certain regions, which is necessary for refraining from making uncertain classification as much as possible, (ii) measure of sharpness balance, which helps to leverage on the location of a pattern from borderline and identify included or excluded patterns by means of their location from borderline, (iii) measure of gradualness balance, which exploits the degree of transition of a pattern out of or into ck. Each method comes with some advantages. For instance, the first and third methods may minimize the overall amount of unclassified patterns. To provide an overall evaluation of the performance of the proposed methods, a comparative study with some other shadowed set-based optimization methods are involved by considering some data sets from UCI Machine Learning repository. Friedman testing followed by Holm-Bonferroni testing are also exploited to provide statistical analysis on the performance significance of the compared methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中冷风发布了新的文献求助10
1秒前
香蕉觅云应助LQ采纳,获得50
1秒前
2秒前
2秒前
3秒前
llynvxia发布了新的文献求助30
4秒前
赘婿应助宇文听南采纳,获得10
4秒前
5秒前
5秒前
卡酷一完成签到 ,获得积分10
5秒前
传奇3应助亓大大采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
CodeCraft应助ZHAOyifan采纳,获得10
8秒前
9秒前
9秒前
9秒前
kiki完成签到 ,获得积分10
9秒前
whykm91发布了新的文献求助10
10秒前
10秒前
成就的幻竹完成签到,获得积分10
10秒前
Jia发布了新的文献求助10
11秒前
游泳的虾饺完成签到,获得积分10
11秒前
科目三应助可靠的寒风采纳,获得10
11秒前
可爱的函函应助芝士采纳,获得10
12秒前
CipherSage应助芝士采纳,获得10
12秒前
orixero应助芝士采纳,获得10
12秒前
领导范儿应助芝士采纳,获得10
12秒前
ding应助芝士采纳,获得10
12秒前
小蘑菇应助芝士采纳,获得10
12秒前
李爱国应助芝士采纳,获得10
12秒前
Yang2完成签到,获得积分10
13秒前
13秒前
13秒前
Akim应助失眠毛衣采纳,获得10
13秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743528
求助须知:如何正确求助?哪些是违规求助? 5414569
关于积分的说明 15347814
捐赠科研通 4884209
什么是DOI,文献DOI怎么找? 2625665
邀请新用户注册赠送积分活动 1574515
关于科研通互助平台的介绍 1531418