Shadowed-set-based three-way clustering methods: An investigation of new optimization-based principles

聚类分析 计算机科学 数据挖掘 模糊聚类 杠杆(统计) 度量(数据仓库) 集合(抽象数据类型) 约束聚类 人工智能 相似性度量 模糊逻辑 机器学习 CURE数据聚类算法 程序设计语言
作者
Tamunokuro Opubo William-West,Armand F. Donfack Kana,Musa Adeku Ibrahim
出处
期刊:Information Sciences [Elsevier]
卷期号:591: 1-24 被引量:8
标识
DOI:10.1016/j.ins.2022.01.018
摘要

Shadowed set approximation form a cornerstone for the explainable decision advice provided by shadowed C means (SCM) clustering in unsupervised learning. Due to its advantage of managing uncertainty in fuzzy clustering, it has been used in data classification. Existing SCM clustering method requires the overall amount of uncertainty associated with a fuzzy cluster ck to be preserved in its boundary region. This requirement may suffer serious risk of having high number of unclassified patterns, especially when the uncertainty in ck is very high. Consequently, the ensuing clustering may not adequately maximize the inter-cluster separation necessary for achieving optimum cluster validity results. To tackle this problem, this paper considers new SCM clustering methods arising from (i) trade-off between uncertain and certain regions, which is necessary for refraining from making uncertain classification as much as possible, (ii) measure of sharpness balance, which helps to leverage on the location of a pattern from borderline and identify included or excluded patterns by means of their location from borderline, (iii) measure of gradualness balance, which exploits the degree of transition of a pattern out of or into ck. Each method comes with some advantages. For instance, the first and third methods may minimize the overall amount of unclassified patterns. To provide an overall evaluation of the performance of the proposed methods, a comparative study with some other shadowed set-based optimization methods are involved by considering some data sets from UCI Machine Learning repository. Friedman testing followed by Holm-Bonferroni testing are also exploited to provide statistical analysis on the performance significance of the compared methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助卿君采纳,获得10
1秒前
1秒前
e2r完成签到,获得积分10
2秒前
香蕉觅云应助热心梦山采纳,获得10
3秒前
xiuqing董完成签到,获得积分10
3秒前
4秒前
科研人才发布了新的文献求助10
4秒前
4秒前
4秒前
吴金菊完成签到,获得积分10
7秒前
ding应助包宇采纳,获得10
7秒前
现代宝宝完成签到,获得积分10
7秒前
共享精神应助怎么说采纳,获得20
7秒前
酷波er应助otto12306采纳,获得10
8秒前
FYm完成签到,获得积分10
8秒前
8秒前
wyg1994完成签到,获得积分10
8秒前
qiukeyingying发布了新的文献求助10
9秒前
善学以致用应助峪山洛采纳,获得10
10秒前
科研通AI6应助BAI_1采纳,获得30
10秒前
10秒前
贪玩的书包完成签到,获得积分10
11秒前
11秒前
liuhua完成签到,获得积分10
11秒前
12秒前
开朗的夜山完成签到,获得积分10
12秒前
se完成签到,获得积分10
14秒前
Aha完成签到,获得积分10
14秒前
14秒前
waa完成签到,获得积分10
14秒前
汉堡包应助Bailey采纳,获得10
14秒前
失眠的血茗应助岚婘采纳,获得10
14秒前
祁忆完成签到,获得积分10
15秒前
wtt0109完成签到,获得积分10
16秒前
小武发布了新的文献求助10
16秒前
17秒前
kk发布了新的文献求助10
17秒前
17秒前
19秒前
小桔青山完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419038
求助须知:如何正确求助?哪些是违规求助? 4534530
关于积分的说明 14144956
捐赠科研通 4450879
什么是DOI,文献DOI怎么找? 2441467
邀请新用户注册赠送积分活动 1433115
关于科研通互助平台的介绍 1410503