Shadowed-set-based three-way clustering methods: An investigation of new optimization-based principles

聚类分析 计算机科学 数据挖掘 模糊聚类 杠杆(统计) 度量(数据仓库) 集合(抽象数据类型) 约束聚类 人工智能 相似性度量 模糊逻辑 机器学习 CURE数据聚类算法 程序设计语言
作者
Tamunokuro Opubo William-West,Armand F. Donfack Kana,Musa Adeku Ibrahim
出处
期刊:Information Sciences [Elsevier]
卷期号:591: 1-24 被引量:8
标识
DOI:10.1016/j.ins.2022.01.018
摘要

Shadowed set approximation form a cornerstone for the explainable decision advice provided by shadowed C means (SCM) clustering in unsupervised learning. Due to its advantage of managing uncertainty in fuzzy clustering, it has been used in data classification. Existing SCM clustering method requires the overall amount of uncertainty associated with a fuzzy cluster ck to be preserved in its boundary region. This requirement may suffer serious risk of having high number of unclassified patterns, especially when the uncertainty in ck is very high. Consequently, the ensuing clustering may not adequately maximize the inter-cluster separation necessary for achieving optimum cluster validity results. To tackle this problem, this paper considers new SCM clustering methods arising from (i) trade-off between uncertain and certain regions, which is necessary for refraining from making uncertain classification as much as possible, (ii) measure of sharpness balance, which helps to leverage on the location of a pattern from borderline and identify included or excluded patterns by means of their location from borderline, (iii) measure of gradualness balance, which exploits the degree of transition of a pattern out of or into ck. Each method comes with some advantages. For instance, the first and third methods may minimize the overall amount of unclassified patterns. To provide an overall evaluation of the performance of the proposed methods, a comparative study with some other shadowed set-based optimization methods are involved by considering some data sets from UCI Machine Learning repository. Friedman testing followed by Holm-Bonferroni testing are also exploited to provide statistical analysis on the performance significance of the compared methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xpd发布了新的文献求助10
1秒前
zly完成签到 ,获得积分10
1秒前
从容雨筠完成签到,获得积分10
2秒前
景辣条应助Ganlou采纳,获得10
2秒前
岁月如酒应助christinaMarsh采纳,获得10
2秒前
科研小哥应助貔貅采纳,获得10
3秒前
小薇完成签到 ,获得积分10
4秒前
BaiX应助知性的黑猫采纳,获得10
4秒前
情怀应助安静的泥猴桃采纳,获得10
5秒前
xpd完成签到,获得积分10
5秒前
修仙应助zcbb采纳,获得10
5秒前
lhr完成签到,获得积分10
5秒前
xiongyuan完成签到,获得积分10
6秒前
含蓄的小熊猫完成签到 ,获得积分10
6秒前
dtxr完成签到,获得积分20
6秒前
czq完成签到,获得积分20
7秒前
7秒前
绵绵球完成签到,获得积分0
7秒前
7秒前
7秒前
跳跃幻儿完成签到,获得积分10
8秒前
海绵宝宝完成签到,获得积分10
10秒前
Rishel_Li完成签到,获得积分10
10秒前
cookie完成签到,获得积分10
10秒前
SSL完成签到,获得积分10
10秒前
CX完成签到 ,获得积分10
11秒前
Cc发布了新的文献求助10
11秒前
汕头凯奇完成签到,获得积分10
12秒前
俊逸的咖啡完成签到,获得积分10
12秒前
优秀的枕头完成签到,获得积分10
12秒前
666发布了新的文献求助10
12秒前
传奇3应助阳洋采纳,获得10
13秒前
午后狂睡完成签到 ,获得积分10
13秒前
恋雅颖月完成签到 ,获得积分10
13秒前
罗博超完成签到,获得积分10
14秒前
稳重岩完成签到 ,获得积分10
14秒前
宫宛儿完成签到,获得积分10
14秒前
王雨薇完成签到,获得积分10
15秒前
羊皮大哈完成签到,获得积分10
15秒前
vvvvvvv完成签到,获得积分10
15秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167282
求助须知:如何正确求助?哪些是违规求助? 2818798
关于积分的说明 7922523
捐赠科研通 2478563
什么是DOI,文献DOI怎么找? 1320404
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443