Atomistic-scale Simulations on Surface Activation Process of Dielectric Oxides for Hybrid Bonding Applications

悬空债券 X射线光电子能谱 材料科学 电介质 氧化物 分子动力学 化学物理 化学键 离子 氧化硅 表面能 纳米技术 原子单位 计算化学 光电子学 化学工程 化学 复合材料 物理 氮化硅 工程类 有机化学 冶金 量子力学
作者
Seung Ho Hahn,Hyunjae Lee,Young Hyun Jo,Byungjo Kim,Wooyoung Kim,Wonyoung Choi,Kwan-Yong Lim,Minwoo Rhee
标识
DOI:10.1109/eptc53413.2021.9663933
摘要

Hybrid bonding has emerged as a promising 3D integration packaging technology for the next generation stacking devices, with the advantages of higher performance and smaller form factor over the conventional micro-bump interconnects. Despite the current development and understanding of such methodology so far, detailed mechanisms underlying the dielectric surface activation and bonding processes have yet been fully elucidated at the atomic level. Here, we present the full atomistic-scale simulation results that demonstrate surface activation process of dielectric oxide materials using reactive molecular dynamics (MD) simulation. We modeled a substrate material of silicon oxide $(\mathrm{S}\mathrm{i}\mathrm{O}_{x})$ and investigated the chemical and physical modifications introduced by N 2 plasma which is one of industrial-wise widely adopted gases for surface activation process. The plasma ion species and their impact energy along with flux data were collected from the plasma chamber simulation and were directly reflected into the MD framework. On the basis of simulation results, we first discuss the surface chemical state change of dielectric oxides after the plasma treatment. The degree of changes was quantified by evaluating the penetration depth, number density, and bond information (e.g. dangling, bridging bonds) which can potentially be correlated with the XPS (X-ray Photoelectron Spectroscopy) data. Another major finding which is a surface reconstruction mechanism is further discussed. We propose that ion bombardment plays an important role of breaking the chemical bonds, but at the same time, it physically reconstruct the surface to produce surface inactive sites. These sites hinder the formation of interfacial bonds during the hybrid bonding process thereby deteriorate the bonding strength of dielectric materials after the annealing process. The atomistic insight presented in this work can provide thorough understanding of plasma activated surface topology at the resolution scale that is often hard to reach with the experimental characterization techniques. In addition, the computational workflow represented here may provide a useful guideline for the surface modification process and overcome the time and expense resource constraints by supplementing empirical decisions made from the trial-and-error based full design of experiment endeavors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nancylan应助chunyeliangchuan采纳,获得10
1秒前
rider完成签到,获得积分10
2秒前
2秒前
duan完成签到,获得积分10
3秒前
wlx完成签到,获得积分10
3秒前
3秒前
我wwww发布了新的文献求助10
3秒前
5秒前
Akim应助林林采纳,获得10
5秒前
小小猪完成签到,获得积分10
6秒前
跳跃毒娘发布了新的文献求助10
6秒前
余弦完成签到 ,获得积分10
7秒前
7秒前
蝈蝈完成签到,获得积分10
8秒前
Creep完成签到,获得积分10
8秒前
我wwww完成签到,获得积分10
8秒前
9秒前
魔力兔子完成签到,获得积分10
10秒前
果汁鱼完成签到,获得积分10
10秒前
10秒前
shengch0234完成签到,获得积分10
10秒前
fafamimireredo完成签到,获得积分10
10秒前
余弦关注了科研通微信公众号
10秒前
咩咩羊完成签到,获得积分10
11秒前
万能图书馆应助Creep采纳,获得10
11秒前
12秒前
13秒前
13秒前
13秒前
酷波er应助我wwww采纳,获得10
13秒前
zh发布了新的文献求助10
14秒前
15秒前
2025211022发布了新的文献求助10
15秒前
ZW完成签到,获得积分10
16秒前
失眠的黑猫完成签到,获得积分10
16秒前
bkagyin应助zzzqqq采纳,获得10
17秒前
126373发布了新的文献求助10
17秒前
刀刀发布了新的文献求助10
17秒前
zzzz发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352940
求助须知:如何正确求助?哪些是违规求助? 4485618
关于积分的说明 13963907
捐赠科研通 4385768
什么是DOI,文献DOI怎么找? 2409561
邀请新用户注册赠送积分活动 1401897
关于科研通互助平台的介绍 1375605