Atomistic-scale Simulations on Surface Activation Process of Dielectric Oxides for Hybrid Bonding Applications

悬空债券 X射线光电子能谱 材料科学 电介质 氧化物 分子动力学 化学物理 化学键 离子 氧化硅 表面能 纳米技术 原子单位 计算化学 光电子学 化学工程 化学 复合材料 物理 氮化硅 工程类 有机化学 冶金 量子力学
作者
Seung Ho Hahn,Hyunjae Lee,Young Hyun Jo,Byungjo Kim,Wooyoung Kim,Wonyoung Choi,Kwan-Yong Lim,Minwoo Rhee
标识
DOI:10.1109/eptc53413.2021.9663933
摘要

Hybrid bonding has emerged as a promising 3D integration packaging technology for the next generation stacking devices, with the advantages of higher performance and smaller form factor over the conventional micro-bump interconnects. Despite the current development and understanding of such methodology so far, detailed mechanisms underlying the dielectric surface activation and bonding processes have yet been fully elucidated at the atomic level. Here, we present the full atomistic-scale simulation results that demonstrate surface activation process of dielectric oxide materials using reactive molecular dynamics (MD) simulation. We modeled a substrate material of silicon oxide $(\mathrm{S}\mathrm{i}\mathrm{O}_{x})$ and investigated the chemical and physical modifications introduced by N 2 plasma which is one of industrial-wise widely adopted gases for surface activation process. The plasma ion species and their impact energy along with flux data were collected from the plasma chamber simulation and were directly reflected into the MD framework. On the basis of simulation results, we first discuss the surface chemical state change of dielectric oxides after the plasma treatment. The degree of changes was quantified by evaluating the penetration depth, number density, and bond information (e.g. dangling, bridging bonds) which can potentially be correlated with the XPS (X-ray Photoelectron Spectroscopy) data. Another major finding which is a surface reconstruction mechanism is further discussed. We propose that ion bombardment plays an important role of breaking the chemical bonds, but at the same time, it physically reconstruct the surface to produce surface inactive sites. These sites hinder the formation of interfacial bonds during the hybrid bonding process thereby deteriorate the bonding strength of dielectric materials after the annealing process. The atomistic insight presented in this work can provide thorough understanding of plasma activated surface topology at the resolution scale that is often hard to reach with the experimental characterization techniques. In addition, the computational workflow represented here may provide a useful guideline for the surface modification process and overcome the time and expense resource constraints by supplementing empirical decisions made from the trial-and-error based full design of experiment endeavors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情书白发布了新的文献求助10
1秒前
TT发布了新的文献求助10
1秒前
1秒前
尔舟行发布了新的文献求助10
1秒前
马小翠发布了新的文献求助10
2秒前
2秒前
斑马还没睡完成签到,获得积分10
2秒前
不安的元霜完成签到,获得积分10
2秒前
汉堡包应助QW111采纳,获得10
2秒前
kks569完成签到,获得积分10
2秒前
呼呼完成签到,获得积分10
3秒前
3秒前
kangbo111发布了新的文献求助20
3秒前
3秒前
3秒前
善学以致用应助一年5篇采纳,获得10
3秒前
科研通AI6应助dht采纳,获得10
4秒前
4秒前
所所应助jinjinjin采纳,获得10
4秒前
高高完成签到,获得积分10
4秒前
科研通AI6应助雪雪啊采纳,获得10
4秒前
5秒前
5秒前
Orange应助wise111采纳,获得10
5秒前
hahaha发布了新的文献求助10
5秒前
7秒前
能干妙松完成签到,获得积分10
7秒前
晴天完成签到,获得积分10
7秒前
7秒前
lixm发布了新的文献求助10
8秒前
Dai完成签到,获得积分10
8秒前
9秒前
echosnooow发布了新的文献求助10
9秒前
文艺的幼菱完成签到,获得积分10
10秒前
bkagyin应助0717采纳,获得10
10秒前
可耐的靖完成签到,获得积分10
11秒前
11秒前
123完成签到,获得积分10
11秒前
核桃应助收拾收拾采纳,获得10
11秒前
Dai发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410082
求助须知:如何正确求助?哪些是违规求助? 4527588
关于积分的说明 14111576
捐赠科研通 4441954
什么是DOI,文献DOI怎么找? 2437768
邀请新用户注册赠送积分活动 1429705
关于科研通互助平台的介绍 1407763