Atomistic-scale Simulations on Surface Activation Process of Dielectric Oxides for Hybrid Bonding Applications

悬空债券 X射线光电子能谱 材料科学 电介质 氧化物 分子动力学 化学物理 化学键 离子 氧化硅 表面能 纳米技术 原子单位 计算化学 光电子学 化学工程 化学 复合材料 物理 氮化硅 有机化学 工程类 冶金 量子力学
作者
Seung Ho Hahn,Hyunjae Lee,Young Hyun Jo,Byungjo Kim,Wooyoung Kim,Wonyoung Choi,Kwan-Yong Lim,Minwoo Rhee
标识
DOI:10.1109/eptc53413.2021.9663933
摘要

Hybrid bonding has emerged as a promising 3D integration packaging technology for the next generation stacking devices, with the advantages of higher performance and smaller form factor over the conventional micro-bump interconnects. Despite the current development and understanding of such methodology so far, detailed mechanisms underlying the dielectric surface activation and bonding processes have yet been fully elucidated at the atomic level. Here, we present the full atomistic-scale simulation results that demonstrate surface activation process of dielectric oxide materials using reactive molecular dynamics (MD) simulation. We modeled a substrate material of silicon oxide $(\mathrm{S}\mathrm{i}\mathrm{O}_{x})$ and investigated the chemical and physical modifications introduced by N 2 plasma which is one of industrial-wise widely adopted gases for surface activation process. The plasma ion species and their impact energy along with flux data were collected from the plasma chamber simulation and were directly reflected into the MD framework. On the basis of simulation results, we first discuss the surface chemical state change of dielectric oxides after the plasma treatment. The degree of changes was quantified by evaluating the penetration depth, number density, and bond information (e.g. dangling, bridging bonds) which can potentially be correlated with the XPS (X-ray Photoelectron Spectroscopy) data. Another major finding which is a surface reconstruction mechanism is further discussed. We propose that ion bombardment plays an important role of breaking the chemical bonds, but at the same time, it physically reconstruct the surface to produce surface inactive sites. These sites hinder the formation of interfacial bonds during the hybrid bonding process thereby deteriorate the bonding strength of dielectric materials after the annealing process. The atomistic insight presented in this work can provide thorough understanding of plasma activated surface topology at the resolution scale that is often hard to reach with the experimental characterization techniques. In addition, the computational workflow represented here may provide a useful guideline for the surface modification process and overcome the time and expense resource constraints by supplementing empirical decisions made from the trial-and-error based full design of experiment endeavors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鸟鸣完成签到,获得积分10
1秒前
frx1996完成签到,获得积分20
1秒前
1秒前
1秒前
吴浩宇发布了新的文献求助10
2秒前
与秋逐鹿发布了新的文献求助10
2秒前
英姑应助三七四十三采纳,获得10
3秒前
4秒前
城南发布了新的文献求助10
4秒前
4秒前
鸟鸣发布了新的文献求助10
5秒前
llw发布了新的文献求助10
5秒前
songyan完成签到,获得积分10
5秒前
阿乾发布了新的文献求助10
6秒前
6秒前
大力飞扬完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
邹鋬发布了新的文献求助10
9秒前
研友_5Y9Z75完成签到 ,获得积分0
9秒前
9秒前
秀丽焦完成签到 ,获得积分10
10秒前
shinn完成签到,获得积分10
10秒前
善学以致用应助姜梦瑶采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
Sahar发布了新的文献求助10
12秒前
认真胜发布了新的文献求助10
13秒前
Cyanvega发布了新的文献求助10
13秒前
songyan发布了新的文献求助10
13秒前
14秒前
解语花发布了新的文献求助10
14秒前
15秒前
李牧发布了新的文献求助10
16秒前
17秒前
超级的盼山完成签到,获得积分20
17秒前
18秒前
18秒前
linmo发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4605334
求助须知:如何正确求助?哪些是违规求助? 4013256
关于积分的说明 12426716
捐赠科研通 3693913
什么是DOI,文献DOI怎么找? 2036704
邀请新用户注册赠送积分活动 1069652
科研通“疑难数据库(出版商)”最低求助积分说明 953966