Atomistic-scale Simulations on Surface Activation Process of Dielectric Oxides for Hybrid Bonding Applications

悬空债券 X射线光电子能谱 材料科学 电介质 氧化物 分子动力学 化学物理 化学键 离子 氧化硅 表面能 纳米技术 原子单位 计算化学 光电子学 化学工程 化学 复合材料 物理 氮化硅 有机化学 工程类 冶金 量子力学
作者
Seung Ho Hahn,Hyunjae Lee,Young Hyun Jo,Byungjo Kim,Wooyoung Kim,Wonyoung Choi,Kwan-Yong Lim,Minwoo Rhee
标识
DOI:10.1109/eptc53413.2021.9663933
摘要

Hybrid bonding has emerged as a promising 3D integration packaging technology for the next generation stacking devices, with the advantages of higher performance and smaller form factor over the conventional micro-bump interconnects. Despite the current development and understanding of such methodology so far, detailed mechanisms underlying the dielectric surface activation and bonding processes have yet been fully elucidated at the atomic level. Here, we present the full atomistic-scale simulation results that demonstrate surface activation process of dielectric oxide materials using reactive molecular dynamics (MD) simulation. We modeled a substrate material of silicon oxide $(\mathrm{S}\mathrm{i}\mathrm{O}_{x})$ and investigated the chemical and physical modifications introduced by N 2 plasma which is one of industrial-wise widely adopted gases for surface activation process. The plasma ion species and their impact energy along with flux data were collected from the plasma chamber simulation and were directly reflected into the MD framework. On the basis of simulation results, we first discuss the surface chemical state change of dielectric oxides after the plasma treatment. The degree of changes was quantified by evaluating the penetration depth, number density, and bond information (e.g. dangling, bridging bonds) which can potentially be correlated with the XPS (X-ray Photoelectron Spectroscopy) data. Another major finding which is a surface reconstruction mechanism is further discussed. We propose that ion bombardment plays an important role of breaking the chemical bonds, but at the same time, it physically reconstruct the surface to produce surface inactive sites. These sites hinder the formation of interfacial bonds during the hybrid bonding process thereby deteriorate the bonding strength of dielectric materials after the annealing process. The atomistic insight presented in this work can provide thorough understanding of plasma activated surface topology at the resolution scale that is often hard to reach with the experimental characterization techniques. In addition, the computational workflow represented here may provide a useful guideline for the surface modification process and overcome the time and expense resource constraints by supplementing empirical decisions made from the trial-and-error based full design of experiment endeavors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
燕麦片发布了新的文献求助30
1秒前
大个应助MM采纳,获得10
1秒前
充电宝应助冷酷稀采纳,获得10
1秒前
1秒前
有问题发布了新的文献求助10
1秒前
Shuang完成签到,获得积分10
2秒前
lkx完成签到,获得积分10
2秒前
一切都会好起来的完成签到,获得积分10
2秒前
萌酱发布了新的文献求助10
2秒前
橡皮人完成签到,获得积分10
2秒前
大气的玉米完成签到,获得积分10
2秒前
汤圆发布了新的文献求助10
3秒前
3秒前
ZzZz完成签到,获得积分10
3秒前
刘昱君发布了新的文献求助20
3秒前
兴奋的定帮应助zxh采纳,获得10
4秒前
搞怪绿柳发布了新的文献求助10
4秒前
4秒前
岁大爷发布了新的文献求助10
5秒前
Kinn完成签到,获得积分10
6秒前
6秒前
7秒前
南瓜完成签到,获得积分10
7秒前
小夏完成签到 ,获得积分0
7秒前
王不留行完成签到,获得积分10
7秒前
我是老大应助善良天抒采纳,获得10
7秒前
March完成签到,获得积分10
8秒前
9秒前
YRX完成签到,获得积分10
9秒前
李爱国应助wfy采纳,获得10
10秒前
10秒前
出口成章完成签到,获得积分10
10秒前
ZSY完成签到,获得积分10
10秒前
Zzz发布了新的文献求助10
10秒前
10秒前
钱晓曼完成签到,获得积分10
10秒前
靓丽安珊发布了新的文献求助10
11秒前
yuny完成签到,获得积分10
11秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009487
求助须知:如何正确求助?哪些是违规求助? 3549466
关于积分的说明 11302335
捐赠科研通 3284069
什么是DOI,文献DOI怎么找? 1810464
邀请新用户注册赠送积分活动 886301
科研通“疑难数据库(出版商)”最低求助积分说明 811339