已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machinery Fault Diagnosis Based on Domain Adaptation to Bridge the Gap Between Simulation and Measured Signals

鉴别器 断层(地质) 有限元法 卷积神经网络 人工神经网络 计算机科学 方位(导航) 桥(图论) 领域(数学分析) 滚动轴承 故障模拟器 人工智能 工程类 模式识别(心理学) 陷入故障 故障检测与隔离 执行机构 结构工程 振动 声学 数学 医学 物理 地震学 内科学 地质学 电信 数学分析 探测器
作者
Yunxia Lou,Anil Kumar,Jiawei Xiang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:85
标识
DOI:10.1109/tim.2022.3180416
摘要

In intelligent fault diagnosis, the success of artificial intelligence (AI) models is highly dependent on labeled training samples, which may not be obtained in real-world applications. Recently, a finite element method (FEM) simulation-based personalized diagnosis method was developed to overcome the problems of insufficient and incomplete labeled training samples. However, the simulation signals obtained using the FEM and measured signals actually have a certain deviation. To supplement the FEM simulation-based personalized diagnosis method, a fault diagnosis method using domain adaptation (DA) is proposed to bridge the gap between simulation signals and measured signals. First, the FEM is adopted to obtain sufficient and complete simulation samples of all the fault categories as the original fault samples in the source domain. Second, the original simulation fault samples are adjusted using a generative adversarial network (GAN)-based DA network to make them similar to the measured samples through the adversarial training of the refiner and domain discriminator. Last, credible adjustment fault samples and measured fault samples obtained in machinery are applied to a convolutional neural network (CNN) for training and testing to complete the fault classification. The data obtained from rolling element bearing and gear test rigs are utilized to explore the feasibility of the proposed method, and the classification accuracies reach 99.44% and 99.58%, respectively. The comparison investigations using experimental data of gears and bearings indicate that the present method can accurately classify faults in machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XL神放发布了新的文献求助10
刚刚
思7发布了新的文献求助10
1秒前
斯文败类应助小菜采纳,获得10
3秒前
方囧发布了新的文献求助10
4秒前
科研通AI6应助务实的天空采纳,获得10
5秒前
谭文完成签到 ,获得积分10
5秒前
5秒前
7秒前
漂亮的天亦完成签到,获得积分10
7秒前
8秒前
Srystal完成签到,获得积分10
8秒前
Owen应助白桃乌龙采纳,获得10
9秒前
无的发布了新的文献求助10
10秒前
OPO发布了新的文献求助10
10秒前
小蘑菇应助风中的丝袜采纳,获得10
11秒前
Akim应助风中的丝袜采纳,获得30
11秒前
11秒前
11秒前
源源完成签到 ,获得积分10
13秒前
一一应助spirit采纳,获得10
13秒前
14秒前
14秒前
15秒前
雷电将军发布了新的文献求助10
17秒前
小菜发布了新的文献求助10
19秒前
19秒前
19秒前
李健应助OPO采纳,获得10
20秒前
雷电将军完成签到,获得积分10
24秒前
qianqian完成签到,获得积分10
25秒前
小马甲应助WW采纳,获得10
29秒前
32秒前
33秒前
33秒前
lx完成签到 ,获得积分10
35秒前
37秒前
lili发布了新的文献求助10
37秒前
充电宝应助呜呜呜呜采纳,获得30
37秒前
美满大楚完成签到,获得积分10
38秒前
大个应助hatoyama采纳,获得10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394402
求助须知:如何正确求助?哪些是违规求助? 4515551
关于积分的说明 14054852
捐赠科研通 4426835
什么是DOI,文献DOI怎么找? 2431517
邀请新用户注册赠送积分活动 1423661
关于科研通互助平台的介绍 1402599