Machinery Fault Diagnosis Based on Domain Adaptation to Bridge the Gap Between Simulation and Measured Signals

鉴别器 断层(地质) 有限元法 卷积神经网络 人工神经网络 计算机科学 方位(导航) 桥(图论) 领域(数学分析) 滚动轴承 故障模拟器 人工智能 工程类 模式识别(心理学) 陷入故障 故障检测与隔离 执行机构 结构工程 振动 声学 数学 数学分析 地震学 地质学 内科学 物理 探测器 电信 医学
作者
Yunxia Lou,Anil Kumar,Jiawei Xiang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:85
标识
DOI:10.1109/tim.2022.3180416
摘要

In intelligent fault diagnosis, the success of artificial intelligence (AI) models is highly dependent on labeled training samples, which may not be obtained in real-world applications. Recently, a finite element method (FEM) simulation-based personalized diagnosis method was developed to overcome the problems of insufficient and incomplete labeled training samples. However, the simulation signals obtained using the FEM and measured signals actually have a certain deviation. To supplement the FEM simulation-based personalized diagnosis method, a fault diagnosis method using domain adaptation (DA) is proposed to bridge the gap between simulation signals and measured signals. First, the FEM is adopted to obtain sufficient and complete simulation samples of all the fault categories as the original fault samples in the source domain. Second, the original simulation fault samples are adjusted using a generative adversarial network (GAN)-based DA network to make them similar to the measured samples through the adversarial training of the refiner and domain discriminator. Last, credible adjustment fault samples and measured fault samples obtained in machinery are applied to a convolutional neural network (CNN) for training and testing to complete the fault classification. The data obtained from rolling element bearing and gear test rigs are utilized to explore the feasibility of the proposed method, and the classification accuracies reach 99.44% and 99.58%, respectively. The comparison investigations using experimental data of gears and bearings indicate that the present method can accurately classify faults in machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独雨梅完成签到,获得积分10
1秒前
woobinhua完成签到 ,获得积分10
1秒前
雪落你看不见完成签到,获得积分10
3秒前
十月天秤完成签到,获得积分0
4秒前
依文完成签到,获得积分20
4秒前
ymr完成签到 ,获得积分10
5秒前
哦哦哦完成签到 ,获得积分10
6秒前
jzmupyj完成签到,获得积分10
6秒前
大橙子发布了新的文献求助10
9秒前
xdlongchem完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
小梦完成签到,获得积分10
13秒前
xuhang完成签到,获得积分10
13秒前
ZSHAN完成签到,获得积分10
14秒前
美满的机器猫完成签到,获得积分10
17秒前
王小磊完成签到,获得积分10
21秒前
谢花花完成签到 ,获得积分10
22秒前
23秒前
瓦罐完成签到 ,获得积分10
23秒前
扁舟灬完成签到,获得积分10
24秒前
Cpp完成签到 ,获得积分10
26秒前
贤惠的老黑完成签到 ,获得积分10
28秒前
ame1120发布了新的文献求助10
28秒前
倦梦还完成签到,获得积分10
30秒前
Sunrise完成签到,获得积分10
31秒前
yyyy发布了新的文献求助10
40秒前
自觉柠檬完成签到 ,获得积分10
44秒前
ergatoid完成签到,获得积分10
44秒前
Hao完成签到,获得积分10
45秒前
月亮煮粥完成签到,获得积分10
45秒前
欣欣完成签到 ,获得积分10
47秒前
现代的紫霜完成签到,获得积分10
48秒前
研学弟完成签到,获得积分10
49秒前
50秒前
jzmulyl完成签到,获得积分10
51秒前
cxdhxu完成签到 ,获得积分10
51秒前
852应助大橙子采纳,获得10
53秒前
务实雁梅完成签到,获得积分10
58秒前
酷波er应助廿伊采纳,获得30
59秒前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022