行动方式
三唑酮
杀菌剂
酶
甾醇
合理设计
生物化学
脱甲基酶
生物合成
细胞色素P450
生物
生物测定
化学
抗真菌
三唑
立体化学
计算生物学
基因
植物
微生物学
有机化学
遗传学
胆固醇
表观遗传学
作者
Ying Wang,Song Kou,Jingqian Huo,Susu Sun,Hongwei Yang,Shiyong Zhao,Liang-Fu Tang,Lijun Han,Jin-Lin Zhang,Lai Chen
标识
DOI:10.1021/acs.jafc.2c02350
摘要
A rational molecular design approach was developed in our laboratory to guide the discovery of novel sterol biosynthesis inhibitors. Based on the application of bioactivities of heterocyclic rings and molecular docking targeting the sterol biosynthesis 14α-demethylase, a series of 4-chloropyrazole-based pyridine derivatives were rationally designed, synthesized, and characterized and their fungicidal activities were also evaluated. Bioassay results showed that 7e, 7f, and 7m exhibited commendable, diverse antifungal actions that are comparable to those of the positive controls imazalil and triadimefon. The active compounds' mode of action was further studied by microscopy observations, Q-PCR, and enzyme inhibition assay and discovered that target compounds affect fungal sterol biosynthesis via disturbing RcCYP51 enzyme system. These findings support that their fungicidal mode of action still targets the cytochrome P450-dependent 14α-demethylase as the molecular design did at first. The above results strongly suggest that our rational molecular design protocol is not only practical but also efficient.
科研通智能强力驱动
Strongly Powered by AbleSci AI