HomPINNs: Homotopy physics-informed neural networks for learning multiple solutions of nonlinear elliptic differential equations

人工神经网络 同伦分析法 同伦 初始化 非线性系统 数学 应用数学 计算机科学 人工智能 纯数学 物理 量子力学 程序设计语言
作者
Yao Huang,Wenrui Hao,Guang Lin
出处
期刊:Computers & mathematics with applications [Elsevier BV]
卷期号:121: 62-73 被引量:12
标识
DOI:10.1016/j.camwa.2022.07.002
摘要

Physics-informed neural networks (PINNs) based machine learning is an emerging framework for solving nonlinear differential equations. However, due to the implicit regularity of neural network structure, PINNs can only find the flattest solution in most cases by minimizing the loss functions. In this paper, we combine PINNs with the homotopy continuation method, a classical numerical method to compute isolated roots of polynomial systems, and propose a new deep learning framework, named homotopy physics-informed neural networks (HomPINNs), for solving multiple solutions of nonlinear elliptic differential equations. The implementation of an HomPINN is a homotopy process that is composed of the training of a fully connected neural network, named the starting neural network, and training processes of several PINNs with different tracking parameters. The starting neural network is to approximate a starting function constructed by the trivial solutions, while other PINNs are to minimize the loss functions defined by boundary condition and homotopy functions, varying with different tracking parameters. These training processes are regraded as different steps of a homotopy process, and a PINN is initialized by the well-trained neural network of the previous step, while the first starting neural network is initialized using the default initialization method. Several numerical examples are presented to show the efficiency of our proposed HomPINNs, including reaction-diffusion equations with a heart-shaped domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
没有蛀牙完成签到,获得积分10
1秒前
1秒前
酶没美镁完成签到,获得积分10
2秒前
2秒前
Lwxbb完成签到,获得积分10
3秒前
科目三应助搬砖人采纳,获得200
3秒前
安然发布了新的文献求助10
3秒前
SweetyANN完成签到,获得积分10
4秒前
4秒前
勤劳溪灵完成签到,获得积分10
4秒前
4秒前
夏姬宁静发布了新的文献求助10
5秒前
情怀应助无所吊谓采纳,获得10
5秒前
Active完成签到,获得积分10
5秒前
scholars完成签到,获得积分10
6秒前
ohno耶耶耶发布了新的文献求助10
7秒前
SweetyANN发布了新的文献求助10
7秒前
7秒前
niceweiwei发布了新的文献求助10
8秒前
ZG发布了新的文献求助10
8秒前
8秒前
迷路安雁完成签到,获得积分10
9秒前
9秒前
yuery完成签到,获得积分10
9秒前
牛牛牛完成签到,获得积分10
9秒前
A1len完成签到,获得积分10
10秒前
爱写论文的小胡完成签到,获得积分10
10秒前
拉长的问晴完成签到,获得积分10
11秒前
Yukikig完成签到,获得积分10
11秒前
哈哈哈哈哈完成签到,获得积分10
11秒前
tofms完成签到,获得积分10
11秒前
没有蛀牙发布了新的文献求助10
11秒前
Starain完成签到,获得积分10
11秒前
WW完成签到,获得积分10
12秒前
12秒前
12秒前
zhengke924完成签到,获得积分10
13秒前
aaaaa完成签到,获得积分10
13秒前
GERRARD完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874