HomPINNs: Homotopy physics-informed neural networks for learning multiple solutions of nonlinear elliptic differential equations

人工神经网络 同伦分析法 同伦 初始化 非线性系统 数学 应用数学 计算机科学 人工智能 纯数学 物理 量子力学 程序设计语言
作者
Yao Huang,Wenrui Hao,Guang Lin
出处
期刊:Computers & mathematics with applications [Elsevier]
卷期号:121: 62-73 被引量:12
标识
DOI:10.1016/j.camwa.2022.07.002
摘要

Physics-informed neural networks (PINNs) based machine learning is an emerging framework for solving nonlinear differential equations. However, due to the implicit regularity of neural network structure, PINNs can only find the flattest solution in most cases by minimizing the loss functions. In this paper, we combine PINNs with the homotopy continuation method, a classical numerical method to compute isolated roots of polynomial systems, and propose a new deep learning framework, named homotopy physics-informed neural networks (HomPINNs), for solving multiple solutions of nonlinear elliptic differential equations. The implementation of an HomPINN is a homotopy process that is composed of the training of a fully connected neural network, named the starting neural network, and training processes of several PINNs with different tracking parameters. The starting neural network is to approximate a starting function constructed by the trivial solutions, while other PINNs are to minimize the loss functions defined by boundary condition and homotopy functions, varying with different tracking parameters. These training processes are regraded as different steps of a homotopy process, and a PINN is initialized by the well-trained neural network of the previous step, while the first starting neural network is initialized using the default initialization method. Several numerical examples are presented to show the efficiency of our proposed HomPINNs, including reaction-diffusion equations with a heart-shaped domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Linden_bd完成签到 ,获得积分10
1秒前
2秒前
HaoyangP发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
5秒前
深情安青应助nuannuan采纳,获得20
5秒前
呆萌冰绿完成签到,获得积分10
5秒前
李大园子完成签到 ,获得积分10
5秒前
5秒前
华枝春满完成签到,获得积分10
6秒前
wuqilong完成签到,获得积分10
7秒前
dreamlightzy应助qmd采纳,获得10
7秒前
NewMoon完成签到,获得积分10
7秒前
FashionBoy应助嘟嘟采纳,获得10
7秒前
洁净的127完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
2339822272发布了新的文献求助10
10秒前
星星完成签到,获得积分10
10秒前
幸运兔发布了新的文献求助10
11秒前
上官若男应助wqx采纳,获得10
11秒前
月亮邮递员完成签到,获得积分10
13秒前
222完成签到 ,获得积分10
13秒前
Likj完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
15秒前
异氰酸正丙酯完成签到 ,获得积分10
15秒前
wsc发布了新的文献求助10
15秒前
幸运兔完成签到,获得积分10
16秒前
曾祥钰完成签到 ,获得积分10
17秒前
18秒前
18秒前
bkagyin应助XM采纳,获得10
18秒前
18秒前
芒果糯米球完成签到,获得积分10
20秒前
未来完成签到,获得积分10
22秒前
22秒前
nuonuo发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414973
求助须知:如何正确求助?哪些是违规求助? 4531742
关于积分的说明 14129928
捐赠科研通 4447167
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431721
关于科研通互助平台的介绍 1409333