HomPINNs: Homotopy physics-informed neural networks for learning multiple solutions of nonlinear elliptic differential equations

人工神经网络 同伦分析法 同伦 初始化 非线性系统 数学 应用数学 计算机科学 人工智能 纯数学 物理 量子力学 程序设计语言
作者
Yao Huang,Wenrui Hao,Guang Lin
出处
期刊:Computers & mathematics with applications [Elsevier]
卷期号:121: 62-73 被引量:12
标识
DOI:10.1016/j.camwa.2022.07.002
摘要

Physics-informed neural networks (PINNs) based machine learning is an emerging framework for solving nonlinear differential equations. However, due to the implicit regularity of neural network structure, PINNs can only find the flattest solution in most cases by minimizing the loss functions. In this paper, we combine PINNs with the homotopy continuation method, a classical numerical method to compute isolated roots of polynomial systems, and propose a new deep learning framework, named homotopy physics-informed neural networks (HomPINNs), for solving multiple solutions of nonlinear elliptic differential equations. The implementation of an HomPINN is a homotopy process that is composed of the training of a fully connected neural network, named the starting neural network, and training processes of several PINNs with different tracking parameters. The starting neural network is to approximate a starting function constructed by the trivial solutions, while other PINNs are to minimize the loss functions defined by boundary condition and homotopy functions, varying with different tracking parameters. These training processes are regraded as different steps of a homotopy process, and a PINN is initialized by the well-trained neural network of the previous step, while the first starting neural network is initialized using the default initialization method. Several numerical examples are presented to show the efficiency of our proposed HomPINNs, including reaction-diffusion equations with a heart-shaped domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小秦秦完成签到 ,获得积分10
刚刚
aabsd完成签到,获得积分10
1秒前
2秒前
zhaoxi完成签到 ,获得积分10
3秒前
我爱科研发布了新的文献求助10
4秒前
CodeCraft应助轨迹采纳,获得10
5秒前
ZHOUZHEN完成签到,获得积分10
5秒前
Hello应助稀罕你采纳,获得10
7秒前
WYR发布了新的文献求助10
8秒前
完美世界应助积极傥采纳,获得10
9秒前
所所应助大力的诗蕾采纳,获得10
10秒前
善学以致用应助Ar采纳,获得10
10秒前
成就小懒猪完成签到,获得积分10
10秒前
Owen应助番茄炒蛋采纳,获得10
10秒前
无花果应助jj采纳,获得10
10秒前
bukeshuo发布了新的文献求助10
11秒前
彩色的乘风完成签到,获得积分20
12秒前
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
Harry应助科研通管家采纳,获得20
16秒前
Akim应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
17秒前
rosalieshi应助全球采纳,获得30
19秒前
WYR完成签到 ,获得积分10
20秒前
20秒前
21秒前
21秒前
茶茶发布了新的文献求助10
22秒前
几酌应助我爱科研采纳,获得20
22秒前
情怀应助郝宝真采纳,获得10
22秒前
缓慢小熊猫完成签到 ,获得积分10
22秒前
24秒前
Ar发布了新的文献求助10
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162968
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902666
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631546
版权声明 602187