HomPINNs: Homotopy physics-informed neural networks for learning multiple solutions of nonlinear elliptic differential equations

人工神经网络 同伦分析法 同伦 初始化 非线性系统 数学 应用数学 计算机科学 人工智能 纯数学 物理 量子力学 程序设计语言
作者
Yao Huang,Wenrui Hao,Guang Lin
出处
期刊:Computers & mathematics with applications [Elsevier]
卷期号:121: 62-73 被引量:12
标识
DOI:10.1016/j.camwa.2022.07.002
摘要

Physics-informed neural networks (PINNs) based machine learning is an emerging framework for solving nonlinear differential equations. However, due to the implicit regularity of neural network structure, PINNs can only find the flattest solution in most cases by minimizing the loss functions. In this paper, we combine PINNs with the homotopy continuation method, a classical numerical method to compute isolated roots of polynomial systems, and propose a new deep learning framework, named homotopy physics-informed neural networks (HomPINNs), for solving multiple solutions of nonlinear elliptic differential equations. The implementation of an HomPINN is a homotopy process that is composed of the training of a fully connected neural network, named the starting neural network, and training processes of several PINNs with different tracking parameters. The starting neural network is to approximate a starting function constructed by the trivial solutions, while other PINNs are to minimize the loss functions defined by boundary condition and homotopy functions, varying with different tracking parameters. These training processes are regraded as different steps of a homotopy process, and a PINN is initialized by the well-trained neural network of the previous step, while the first starting neural network is initialized using the default initialization method. Several numerical examples are presented to show the efficiency of our proposed HomPINNs, including reaction-diffusion equations with a heart-shaped domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Zero完成签到,获得积分10
1秒前
牂牂完成签到 ,获得积分10
2秒前
慕青应助欣喜机器猫采纳,获得10
3秒前
4秒前
科研通AI6应助llllll采纳,获得10
4秒前
5秒前
6秒前
9秒前
沐兮发布了新的文献求助10
9秒前
dopamine发布了新的文献求助10
9秒前
百川发布了新的文献求助10
10秒前
小米粥完成签到,获得积分10
10秒前
10秒前
小蘑菇应助蓓蓓0303采纳,获得10
11秒前
大河细流完成签到,获得积分10
13秒前
FashionBoy应助1234567xjy采纳,获得10
13秒前
13秒前
14秒前
甜甜电源发布了新的文献求助10
14秒前
小C完成签到,获得积分10
15秒前
123完成签到,获得积分10
15秒前
热情铭完成签到 ,获得积分10
15秒前
15秒前
1111应助dopamine采纳,获得10
15秒前
天天发布了新的文献求助10
16秒前
戴帽子的花盆完成签到,获得积分10
16秒前
why完成签到 ,获得积分10
16秒前
han完成签到,获得积分10
16秒前
梁云发布了新的文献求助10
17秒前
小二郎应助甜菜采纳,获得10
18秒前
Akim应助腼腆的小女孩采纳,获得10
18秒前
Orange应助戴昕东采纳,获得10
18秒前
18秒前
19秒前
研友_VZG7GZ应助沐兮采纳,获得10
19秒前
量子星尘发布了新的文献求助10
21秒前
xiaohu完成签到,获得积分10
21秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419574
求助须知:如何正确求助?哪些是违规求助? 4534806
关于积分的说明 14147001
捐赠科研通 4451480
什么是DOI,文献DOI怎么找? 2441759
邀请新用户注册赠送积分活动 1433376
关于科研通互助平台的介绍 1410616