Semi-supervised deep learning framework for milk analysis using NIR spectrometers

计算机科学 人工智能 分光计 模式识别(心理学) 物理 光学
作者
Mai Said,Ayman Wahba,Diaa Khalil
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:228: 104619-104619 被引量:14
标识
DOI:10.1016/j.chemolab.2022.104619
摘要

Deep learning DL models of NIR spectral data outperforms traditional chemometrics algorithms specially when analyzing complicated materials spectra with overlapping bands. The wide spread of portable miniaturized spectrometers allows the collection of larger datasets which is necessary to build robust DL models. However, with the high cost of chemical referencing most of the collected samples are unreferenced (unsupervised). In this paper, a semi-supervised DL algorithm is proposed to provide a robust scalable model across a wider sample space and sensor space. Two cow milk datasets were collected and measured with 14 Neospectra spectrometers. The proposed algorithm is used to predict milk fat content and water adulteration ratio in milk. Results show that with a reduced referenced (supervised) dataset of only 35% of the milk samples and 50% of the spectrometer units augmented with the remaining unsupervised dataset we can predict milk fat content with R2 = 0.95 and RMSE = 0.22 and milk water adulteration with R2 = 0.8 and RMSE = 0.12. • A novel semi-supervised deep learning regression model framework is proposed. • Two cow milk datasets are collected using portable NIR spectrometers. • Unsupervised samples augmentation reduces sensor variations and sample variations effect on model performance. • Milk fat content and water adulteration ratio are predicted using deep neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满满完成签到 ,获得积分10
刚刚
刚刚
科研通AI6应助简单的幻儿采纳,获得10
刚刚
刚刚
宸5931完成签到,获得积分10
1秒前
1秒前
1秒前
CDN完成签到,获得积分20
2秒前
英俊的铭应助快乐采纳,获得10
2秒前
虚幻双双发布了新的文献求助10
2秒前
Blank完成签到,获得积分10
2秒前
2秒前
希望天下0贩的0应助lx采纳,获得10
2秒前
大方依玉完成签到 ,获得积分10
3秒前
3秒前
小马甲应助charm12采纳,获得10
4秒前
西部牛仔发布了新的文献求助10
4秒前
4秒前
大个应助fanicky采纳,获得10
5秒前
5秒前
可不关注了科研通微信公众号
5秒前
七七发布了新的文献求助10
5秒前
orixero应助Xinwen0322采纳,获得10
5秒前
ZC完成签到,获得积分10
6秒前
书雪发布了新的文献求助10
6秒前
俞若枫完成签到,获得积分0
6秒前
今后应助wu采纳,获得10
6秒前
可靠之玉发布了新的文献求助10
7秒前
深情安青应助交理采纳,获得10
7秒前
所所应助敏敏采纳,获得10
7秒前
7秒前
吴威武发布了新的文献求助100
7秒前
JC完成签到,获得积分10
8秒前
Nora完成签到,获得积分10
8秒前
独特乘云完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助dog采纳,获得10
9秒前
思源应助wsz采纳,获得10
9秒前
10秒前
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646