Semi-supervised deep learning framework for milk analysis using NIR spectrometers

计算机科学 人工智能 分光计 模式识别(心理学) 物理 光学
作者
Mai Said,Ayman Wahba,Diaa Khalil
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:228: 104619-104619 被引量:14
标识
DOI:10.1016/j.chemolab.2022.104619
摘要

Deep learning DL models of NIR spectral data outperforms traditional chemometrics algorithms specially when analyzing complicated materials spectra with overlapping bands. The wide spread of portable miniaturized spectrometers allows the collection of larger datasets which is necessary to build robust DL models. However, with the high cost of chemical referencing most of the collected samples are unreferenced (unsupervised). In this paper, a semi-supervised DL algorithm is proposed to provide a robust scalable model across a wider sample space and sensor space. Two cow milk datasets were collected and measured with 14 Neospectra spectrometers. The proposed algorithm is used to predict milk fat content and water adulteration ratio in milk. Results show that with a reduced referenced (supervised) dataset of only 35% of the milk samples and 50% of the spectrometer units augmented with the remaining unsupervised dataset we can predict milk fat content with R2 = 0.95 and RMSE = 0.22 and milk water adulteration with R2 = 0.8 and RMSE = 0.12. • A novel semi-supervised deep learning regression model framework is proposed. • Two cow milk datasets are collected using portable NIR spectrometers. • Unsupervised samples augmentation reduces sensor variations and sample variations effect on model performance. • Milk fat content and water adulteration ratio are predicted using deep neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chiyudoubao发布了新的文献求助10
1秒前
2秒前
3秒前
Ywffffff发布了新的文献求助10
3秒前
pcx发布了新的文献求助10
4秒前
Owen应助PrayOne采纳,获得10
6秒前
在水一方应助桑姊采纳,获得10
7秒前
太阳发布了新的文献求助10
8秒前
xicifish发布了新的文献求助10
9秒前
汉堡包应助呼啦呼啦采纳,获得10
9秒前
keov完成签到,获得积分10
9秒前
拙青完成签到,获得积分10
10秒前
10秒前
爆米花应助月亮是甜的采纳,获得10
13秒前
深情安青应助太阳采纳,获得10
14秒前
14秒前
botanist完成签到 ,获得积分10
15秒前
16秒前
16秒前
16秒前
16秒前
17秒前
wang应助追寻的妙松采纳,获得10
18秒前
19秒前
21秒前
呼啦呼啦发布了新的文献求助10
21秒前
香蕉觅云应助轩辕自中采纳,获得10
22秒前
22秒前
22秒前
24秒前
24秒前
25秒前
wang应助干净山彤采纳,获得10
25秒前
26秒前
深情安青应助宁静致远采纳,获得10
26秒前
27秒前
27秒前
28秒前
小付发布了新的文献求助10
28秒前
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459176
求助须知:如何正确求助?哪些是违规求助? 3053746
关于积分的说明 9038127
捐赠科研通 2743025
什么是DOI,文献DOI怎么找? 1504631
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663