Time-aware Context-Gated Graph Attention Network for Clinical Risk Prediction

计算机科学 特征选择 数据挖掘 图形 背景(考古学) 机器学习 人工智能 理论计算机科学 生物 古生物学
作者
Yuyang Xu,Haochao Ying,Siyi Qian,Fuzhen Zhuang,Xiao Zhang,Deqing Wang,Jian Wu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:15
标识
DOI:10.1109/tkde.2022.3181780
摘要

Clinical risk prediction based on Electronic Health Records (EHR) can assist doctors in better judgment and can make sense of early diagnosis. However, the prediction performance heavily relies on effective representations from multi-dimensional time-series EHR data. Existing solutions usually focus on temporal features or inherent relations between clinical event variables or extract both information in two separate phases. This usually leads to insufficient patient feature information and results in poor prediction performance. Moreover, existing methods based on Heterogeneous Graph Neural Network usually require manual selection of proper Meta-Paths. To solve these problems, we propose the Time-aware Context-Gated Graph Attention Network (T-ContextGGAN). Specifically, we design a GNN based module with Time-aware Meta-Paths and self-attention mechanism to extract both temporal semantic information and inherent relations of EHR data simultaneously and perform automatic Meta-Path selection. To evaluate the proposed model, we extract the first 48 hour EHR data in the first Intensive Care Unit (ICU) admission of three different tasks from two open-source datasets and model various clinical variables on the proposed EHRGraph. Extensive experimental results show the proposed model can effectively extract informative features, and outperform existing state-of-art models in terms of various prediction measures. Our code is available in https://github.com/OwlCitizen/TContext-GGAN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
2秒前
Lignin发布了新的文献求助10
2秒前
spc68应助谨慎的寒松采纳,获得10
3秒前
4秒前
4秒前
哈哈发布了新的文献求助10
6秒前
6秒前
Mitophagy发布了新的文献求助10
7秒前
Lignin发布了新的文献求助10
7秒前
酷波er应助爱笑飞飞采纳,获得10
8秒前
Lbft发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
MchemG应助天天采纳,获得30
12秒前
12秒前
14秒前
14秒前
17秒前
18秒前
19秒前
20秒前
浪子应助zrw采纳,获得10
23秒前
蓝天发布了新的文献求助10
24秒前
25秒前
25秒前
25秒前
25秒前
MchemG应助谨慎的寒松采纳,获得10
26秒前
yundanli发布了新的文献求助30
28秒前
脑洞疼应助恩恩天天开心采纳,获得10
29秒前
29秒前
Luojiayi完成签到,获得积分10
29秒前
方yc发布了新的文献求助10
30秒前
30秒前
531发布了新的文献求助30
30秒前
hgl完成签到 ,获得积分20
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736878
求助须知:如何正确求助?哪些是违规求助? 5369127
关于积分的说明 15334294
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622982
邀请新用户注册赠送积分活动 1571829
关于科研通互助平台的介绍 1528648