Time-aware Context-Gated Graph Attention Network for Clinical Risk Prediction

计算机科学 特征选择 数据挖掘 图形 背景(考古学) 机器学习 人工智能 理论计算机科学 生物 古生物学
作者
Yuyang Xu,Haochao Ying,Siyi Qian,Fuzhen Zhuang,Xiao Zhang,Deqing Wang,Jian Wu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:15
标识
DOI:10.1109/tkde.2022.3181780
摘要

Clinical risk prediction based on Electronic Health Records (EHR) can assist doctors in better judgment and can make sense of early diagnosis. However, the prediction performance heavily relies on effective representations from multi-dimensional time-series EHR data. Existing solutions usually focus on temporal features or inherent relations between clinical event variables or extract both information in two separate phases. This usually leads to insufficient patient feature information and results in poor prediction performance. Moreover, existing methods based on Heterogeneous Graph Neural Network usually require manual selection of proper Meta-Paths. To solve these problems, we propose the Time-aware Context-Gated Graph Attention Network (T-ContextGGAN). Specifically, we design a GNN based module with Time-aware Meta-Paths and self-attention mechanism to extract both temporal semantic information and inherent relations of EHR data simultaneously and perform automatic Meta-Path selection. To evaluate the proposed model, we extract the first 48 hour EHR data in the first Intensive Care Unit (ICU) admission of three different tasks from two open-source datasets and model various clinical variables on the proposed EHRGraph. Extensive experimental results show the proposed model can effectively extract informative features, and outperform existing state-of-art models in terms of various prediction measures. Our code is available in https://github.com/OwlCitizen/TContext-GGAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
我是老大应助背后的书文采纳,获得10
2秒前
小杭76应助yuner采纳,获得10
2秒前
3秒前
Lester完成签到 ,获得积分10
4秒前
想发sci发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
SC武完成签到,获得积分10
7秒前
17完成签到 ,获得积分10
8秒前
汉堡包应助lilyz615采纳,获得10
8秒前
猪猪hero发布了新的文献求助10
8秒前
nuannuan发布了新的文献求助20
8秒前
肝不动的牛马完成签到,获得积分10
9秒前
9秒前
10秒前
科研通AI6应助shmily采纳,获得10
11秒前
sdhjad完成签到 ,获得积分10
11秒前
6T2完成签到,获得积分10
11秒前
Xc完成签到,获得积分10
12秒前
12秒前
搜集达人应助carly采纳,获得10
13秒前
14秒前
张乐完成签到,获得积分10
14秒前
猪猪hero发布了新的文献求助10
16秒前
zhengyuci完成签到,获得积分10
16秒前
科研通AI2S应助人参跳芭蕾采纳,获得10
16秒前
miao完成签到,获得积分10
16秒前
lala发布了新的文献求助10
17秒前
深情的白薇完成签到,获得积分10
18秒前
友好怜蕾完成签到,获得积分20
18秒前
健壮从霜完成签到,获得积分10
18秒前
LS-GENIUS完成签到,获得积分10
19秒前
19秒前
20秒前
Jenny712完成签到,获得积分10
21秒前
丽丽发布了新的文献求助10
21秒前
lawang发布了新的文献求助30
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414857
求助须知:如何正确求助?哪些是违规求助? 4531710
关于积分的说明 14129736
捐赠科研通 4447140
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431701
关于科研通互助平台的介绍 1409315