Time-aware Context-Gated Graph Attention Network for Clinical Risk Prediction

计算机科学 特征选择 数据挖掘 图形 背景(考古学) 机器学习 人工智能 理论计算机科学 生物 古生物学
作者
Yuyang Xu,Haochao Ying,Siyi Qian,Fuzhen Zhuang,Xiao Zhang,Deqing Wang,Jian Wu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-12 被引量:15
标识
DOI:10.1109/tkde.2022.3181780
摘要

Clinical risk prediction based on Electronic Health Records (EHR) can assist doctors in better judgment and can make sense of early diagnosis. However, the prediction performance heavily relies on effective representations from multi-dimensional time-series EHR data. Existing solutions usually focus on temporal features or inherent relations between clinical event variables or extract both information in two separate phases. This usually leads to insufficient patient feature information and results in poor prediction performance. Moreover, existing methods based on Heterogeneous Graph Neural Network usually require manual selection of proper Meta-Paths. To solve these problems, we propose the Time-aware Context-Gated Graph Attention Network (T-ContextGGAN). Specifically, we design a GNN based module with Time-aware Meta-Paths and self-attention mechanism to extract both temporal semantic information and inherent relations of EHR data simultaneously and perform automatic Meta-Path selection. To evaluate the proposed model, we extract the first 48 hour EHR data in the first Intensive Care Unit (ICU) admission of three different tasks from two open-source datasets and model various clinical variables on the proposed EHRGraph. Extensive experimental results show the proposed model can effectively extract informative features, and outperform existing state-of-art models in terms of various prediction measures. Our code is available in https://github.com/OwlCitizen/TContext-GGAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JamesPei应助XXXX采纳,获得10
2秒前
3秒前
3秒前
坦率班完成签到 ,获得积分10
4秒前
星河发布了新的文献求助20
4秒前
七七完成签到,获得积分10
5秒前
6秒前
SLY完成签到 ,获得积分10
7秒前
7秒前
所所应助跳跳虎采纳,获得10
7秒前
wanci应助seedcode采纳,获得10
8秒前
我是老大应助完犊子采纳,获得10
8秒前
Kevin发布了新的文献求助30
8秒前
9秒前
10秒前
灰灰灰完成签到,获得积分10
12秒前
牛牛眉目发布了新的文献求助10
12秒前
14秒前
哈哈哈完成签到,获得积分10
14秒前
七七发布了新的文献求助10
16秒前
18秒前
研友_nPb9e8完成签到,获得积分10
19秒前
科研通AI2S应助satan9采纳,获得10
20秒前
20秒前
badyoungboy完成签到,获得积分10
20秒前
邵晓啸发布了新的文献求助20
21秒前
星河完成签到,获得积分10
23秒前
追梦少年完成签到,获得积分10
24秒前
24秒前
tamo完成签到,获得积分10
25秒前
seedcode发布了新的文献求助10
26秒前
不吃橘子完成签到,获得积分10
26秒前
韩韩完成签到 ,获得积分10
26秒前
Cynicism完成签到,获得积分10
27秒前
干饭大王应助dusai采纳,获得10
30秒前
牛牛眉目发布了新的文献求助10
31秒前
32秒前
32秒前
万能图书馆应助Kevin采纳,获得10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388