Using Data Pre-Processing and Convolutional Neural Network (CNN) to Mitigate Light Deficient Regions in Visible Light Positioning (VLP) Systems

RSS 卷积神经网络 计算机科学 可靠性(半导体) 可见光通信 光场 人工智能 方案(数学) 实时计算 发光二极管 工程类 数学 电气工程 数学分析 功率(物理) 物理 量子力学 操作系统
作者
Ling-Yuan Hsu,Deng-Cheng Tsai,Chi‐Wai Chow,Yang Liu,Yun-Han Chang,Yuan-Zeng Lin,Chien-Hung Yeh,Yichang Wang,Yiyuan Chen
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:40 (17): 5894-5900 被引量:15
标识
DOI:10.1109/jlt.2022.3184931
摘要

New systems and technologies, such as Internet-of-Things (IOT) may require high reliability and high accuracy indoor positioning and tracking of persons and devices in indoor areas. Among different visible-light-positioning (VLP) schemes, received-signal-strength (RSS) scheme is relatively easy to implement. RSS VLP scheme can provide high accuracy positioning if the optical channels between the Txs and Rxs, as well as the received optical powers of different LEDs are accurately known. Unfortunately, these conditions are not easy to achieve in practice. Due to the limited field-of-view (FOV) of the LED lamps, light deficient regions will happen. This light deficient region could be large and significantly affect the positioning accuracy when performing 3-dimentional (3-D) VLP since at these light deficient regions, very weak or even no optical signal is received. In this work, we put forward and demonstrate the RSS VLP system utilizing data pre-processing and convolutional neural network (CNN) to mitigate light deficient regions in VLP system. Traditional ANN model and linear regression (LR) model are also compared with the CNN model, and the results illustrate that the proposed scheme outperforms the other schemes by not only improving the positioning accuracy, but also the error distribution uniformity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张丹兰发布了新的文献求助10
刚刚
ly完成签到,获得积分10
1秒前
Vesper发布了新的文献求助30
2秒前
3秒前
GaryTwisted发布了新的文献求助10
3秒前
Ava应助CD采纳,获得10
3秒前
在水一方应助wsy1029采纳,获得10
3秒前
深情安青应助雾里采纳,获得10
3秒前
十九完成签到,获得积分10
5秒前
zhen完成签到,获得积分10
6秒前
张子捷发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
九零后无心完成签到,获得积分10
8秒前
8秒前
繁荣的代秋完成签到 ,获得积分10
9秒前
JR完成签到,获得积分10
9秒前
TvTiing完成签到,获得积分10
10秒前
banana完成签到,获得积分10
10秒前
666关闭了666文献求助
11秒前
fshell发布了新的文献求助20
11秒前
xm发布了新的文献求助10
12秒前
周声声发布了新的文献求助30
12秒前
13秒前
Lucas应助Dawson采纳,获得10
14秒前
14秒前
14秒前
Enna完成签到,获得积分10
14秒前
15秒前
15秒前
明天你好完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
17秒前
18秒前
18秒前
liang2508发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924906
求助须知:如何正确求助?哪些是违规求助? 4195065
关于积分的说明 13030178
捐赠科研通 3966775
什么是DOI,文献DOI怎么找? 2174275
邀请新用户注册赠送积分活动 1191665
关于科研通互助平台的介绍 1101154