清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Using Data Pre-Processing and Convolutional Neural Network (CNN) to Mitigate Light Deficient Regions in Visible Light Positioning (VLP) Systems

RSS 卷积神经网络 计算机科学 可靠性(半导体) 可见光通信 光场 人工智能 方案(数学) 实时计算 发光二极管 工程类 数学 电气工程 数学分析 功率(物理) 物理 量子力学 操作系统
作者
Ling-Yuan Hsu,Deng-Cheng Tsai,Chi‐Wai Chow,Yang Liu,Yun-Han Chang,Yuan-Zeng Lin,Chien-Hung Yeh,Yichang Wang,Yiyuan Chen
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:40 (17): 5894-5900 被引量:15
标识
DOI:10.1109/jlt.2022.3184931
摘要

New systems and technologies, such as Internet-of-Things (IOT) may require high reliability and high accuracy indoor positioning and tracking of persons and devices in indoor areas. Among different visible-light-positioning (VLP) schemes, received-signal-strength (RSS) scheme is relatively easy to implement. RSS VLP scheme can provide high accuracy positioning if the optical channels between the Txs and Rxs, as well as the received optical powers of different LEDs are accurately known. Unfortunately, these conditions are not easy to achieve in practice. Due to the limited field-of-view (FOV) of the LED lamps, light deficient regions will happen. This light deficient region could be large and significantly affect the positioning accuracy when performing 3-dimentional (3-D) VLP since at these light deficient regions, very weak or even no optical signal is received. In this work, we put forward and demonstrate the RSS VLP system utilizing data pre-processing and convolutional neural network (CNN) to mitigate light deficient regions in VLP system. Traditional ANN model and linear regression (LR) model are also compared with the CNN model, and the results illustrate that the proposed scheme outperforms the other schemes by not only improving the positioning accuracy, but also the error distribution uniformity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
26秒前
shhoing应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得30
26秒前
岚月发布了新的文献求助30
29秒前
岚月完成签到,获得积分10
43秒前
糊涂的青烟完成签到 ,获得积分10
1分钟前
激动的似狮完成签到,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
感动初蓝完成签到 ,获得积分10
3分钟前
tt完成签到,获得积分10
3分钟前
大鸟依人发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
orixero应助大鸟依人采纳,获得10
5分钟前
cao_bq完成签到,获得积分10
5分钟前
积雪完成签到 ,获得积分10
5分钟前
yang完成签到 ,获得积分10
5分钟前
cao_bq发布了新的文献求助10
6分钟前
6分钟前
一道光发布了新的文献求助30
6分钟前
JamesPei应助一道光采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
CipherSage应助科研通管家采纳,获得10
6分钟前
丘比特应助科研通管家采纳,获得10
6分钟前
领导范儿应助科研通管家采纳,获得10
6分钟前
灵巧的代芙完成签到 ,获得积分10
7分钟前
科研通AI6应助LinWu采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
9分钟前
9分钟前
gexzygg应助科研通管家采纳,获得10
10分钟前
shhoing应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
10分钟前
充电宝应助乐正文涛采纳,获得10
10分钟前
wrl2023完成签到,获得积分10
11分钟前
赘婿应助hourt2395采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561563
求助须知:如何正确求助?哪些是违规求助? 4646648
关于积分的说明 14678717
捐赠科研通 4587987
什么是DOI,文献DOI怎么找? 2517261
邀请新用户注册赠送积分活动 1490543
关于科研通互助平台的介绍 1461566