A Method for Removing ECG Interference From Lumbar EMG Based on Signal Segmentation and SSA

干扰(通信) 信号(编程语言) 计算机科学 模式识别(心理学) 人工智能 分割 肌电图 信号处理 腰椎 语音识别 频道(广播) 电信 医学 精神科 放射科 程序设计语言 雷达
作者
Chao Hou,Fenglun Cai,Fei Liu,Shuhong Cheng,Hongbo Wang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (13): 13309-13317 被引量:5
标识
DOI:10.1109/jsen.2022.3179434
摘要

The lumbar EMG(Electromyography) can effectively reflect the current activity state of human lumbar muscles; however, cardiac signals in the EMG significantly impacts the accuracy of lumbar EMG analysis. Currently, there are some problems in the research of EMG signal interference removal, such as poor removal effects and low operation efficiencies, which do not meet the requirement of real-time signal processing. To solve this problem, this paper proposes a method for removing ECG(Electrocardiogram) interference from lumbar EMG signals based on signal segmentation and SSA(Singular Spectrum Analysis), which first, reduces the amount of data for SSA by detecting and segmenting the ECG interference signal segments and then separating the ECG signals present in the EMG signals through four steps of embedding, decomposition, grouping and reconstruction using SSA, effectively removing the ECG signals present in the EMG signals. Finally, a complete lumbar surface EMG signal without ECG interference was obtained by using the recombination method. The method not only provides a better removal effect but can also greatly improve the computing efficiency of the algorithm. It was proven that the method can improve the computing efficiency by 50-80%, and for signals with obvious ECG interference, the computing speed of the algorithm can be increased to the millisecond level, thus achieving real-time processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眼睛大的怀曼完成签到,获得积分10
刚刚
害羞的裘完成签到 ,获得积分10
1秒前
Lyn发布了新的文献求助10
2秒前
3秒前
123发布了新的文献求助10
3秒前
大鱼应助小鼠星球采纳,获得10
4秒前
4秒前
秀丽莛完成签到,获得积分10
6秒前
佳佳应助cis2014采纳,获得10
6秒前
念所三旬完成签到,获得积分10
7秒前
温暖静柏完成签到,获得积分10
8秒前
8秒前
10秒前
温乘云完成签到,获得积分10
10秒前
11秒前
lukawa完成签到,获得积分10
11秒前
11秒前
12秒前
慕青应助DueR采纳,获得10
13秒前
风清扬应助cab_rose采纳,获得10
13秒前
14秒前
14秒前
chase发布了新的文献求助10
15秒前
15秒前
16秒前
佐zzz完成签到 ,获得积分10
17秒前
111222发布了新的文献求助10
17秒前
17秒前
研友_VZG7GZ应助gogoyoco采纳,获得10
18秒前
Owen应助大鱼采纳,获得10
18秒前
18秒前
18秒前
18秒前
霜鸣发布了新的文献求助10
19秒前
漂亮元灵发布了新的文献求助10
19秒前
科研通AI5应助ss采纳,获得30
20秒前
bbh发布了新的文献求助10
22秒前
李健应助ddddd采纳,获得10
23秒前
bbh发布了新的文献求助10
24秒前
bbh发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176