An Interpretable Convolutional Neural Network Framework for Analyzing Molecular Dynamics Trajectories: a Case Study on Functional States for G-Protein-Coupled Receptors

计算机科学 人工智能 卷积神经网络 深度学习 代表(政治) 机器学习 弹道 人工神经网络 G蛋白偶联受体 任务(项目管理) 生物 受体 政治 生物化学 物理 政治学 经济 管理 法学 天文
作者
Chuan Li,Jiangting Liu,Jianfang Chen,Yuan Yuan,Jin Yu,Qiaolin Gou,Yanzhi Guo,Xuemei Pu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (6): 1399-1410 被引量:17
标识
DOI:10.1021/acs.jcim.2c00085
摘要

Molecular dynamics (MD) simulations have made great contribution to revealing structural and functional mechanisms for many biomolecular systems. However, how to identify functional states and important residues from vast conformation space generated by MD remains challenging; thus an intelligent navigation is highly desired. Despite intelligent advantages of deep learning exhibited in analyzing MD trajectory, its black-box nature limits its application. To address this problem, we explore an interpretable convolutional neural network (CNN)-based deep learning framework to automatically identify diverse active states from the MD trajectory for G-protein-coupled receptors (GPCRs), named the ICNNMD model. To avoid the information loss in representing the conformation structure, the pixel representation is introduced, and then the CNN module is constructed to efficiently extract features followed by a fully connected neural network to realize the classification task. More importantly, we design a local interpretable model-agnostic explanation interpreter for the classification result by local approximation with a linear model, through which important residues underlying distinct active states can be quickly identified. Our model showcases higher than 99% classification accuracy for three important GPCR systems with diverse active states. Notably, some important residues in regulating different biased activities are successfully identified, which are beneficial to elucidating diverse activation mechanisms for GPCRs. Our model can also serve as a general tool to analyze MD trajectory for other biomolecular systems. All source codes are freely available at https://github.com/Jane-Liu97/ICNNMD for aiding MD studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cyrilla发布了新的文献求助50
1秒前
1秒前
EKo完成签到,获得积分10
1秒前
4秒前
6秒前
完美世界应助ken采纳,获得10
6秒前
EarendilK完成签到,获得积分10
7秒前
8秒前
8秒前
开心果发布了新的文献求助10
9秒前
念想完成签到 ,获得积分10
10秒前
11秒前
waxxy发布了新的文献求助10
11秒前
Cyrilla完成签到,获得积分10
12秒前
充电泽发布了新的文献求助10
13秒前
15秒前
科科科科呃完成签到,获得积分10
15秒前
乘风破浪303完成签到,获得积分10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得50
16秒前
16秒前
大个应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
小园饼干应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
16秒前
科目三应助科研通管家采纳,获得10
16秒前
hhhblabla完成签到,获得积分0
20秒前
无花果应助puxiaoman采纳,获得10
20秒前
上官若男应助黄可以采纳,获得10
20秒前
千云皆墨发布了新的文献求助10
20秒前
21秒前
江子骞完成签到 ,获得积分10
22秒前
华仔应助大聪明采纳,获得10
22秒前
嗯嗯完成签到,获得积分10
23秒前
25秒前
ONE完成签到,获得积分10
25秒前
and完成签到,获得积分20
26秒前
tmq关闭了tmq文献求助
26秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Conceptualizing 21st-Century Archives (2014) 238
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3692905
求助须知:如何正确求助?哪些是违规求助? 3243575
关于积分的说明 9844513
捐赠科研通 2955566
什么是DOI,文献DOI怎么找? 1620294
邀请新用户注册赠送积分活动 766436
科研通“疑难数据库(出版商)”最低求助积分说明 740227