组合数学
最小生成树
生成树
数学
连通支配集
有界函数
最小重量
欧氏最小生成树
最小度生成树
最短路径树
Kruskal算法
图形
无向图
离散数学
k-最小生成树
树形结构
二叉树
K元树
数学分析
作者
Michael Segal,Oren Tzfaty
标识
DOI:10.1016/j.cor.2022.105822
摘要
Given a connected, weighted, undirected graph G=(V,E) and a constant D≥2, the bounded-diameter minimum spanning tree problem seeks a spanning tree on G of minimum weight with diameter no more than D. A new algorithm addresses graphs with non-negative weights and has proven performance ratio of O1−Ddmin(|V|−1)w+/w−+1, where w+ (resp. w−) denotes the maximum (resp. minimum) edge weight in the graph, and dmin is the hop diameter of G. The running time of the algorithm is O|V|logD after minimum spanning tree of G is computed. The performance of the algorithm has been evaluated empirically as well.
科研通智能强力驱动
Strongly Powered by AbleSci AI