Spherical Convolution Empowered Viewport Prediction in 360 Video Multicast with Limited FoV Feedback

计算机科学 卷积(计算机科学) 人工智能 失真(音乐) 卷积神经网络 计算机视觉 视区 钥匙(锁) 视野 人工神经网络 计算机网络 计算机安全 放大器 带宽(计算)
作者
Jie Li,Litao Han,Chong Zhang,Qiyue Li,Zhi Liu
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (1): 1-23 被引量:23
标识
DOI:10.1145/3511603
摘要

Field of view (FoV) prediction is critical in 360-degree video multicast, which is a key component of the emerging virtual reality and augmented reality applications. Most of the current prediction methods combining saliency detection and FoV information neither take into account that the distortion of projected 360-degree videos can invalidate the weight sharing of traditional convolutional networks nor do they adequately consider the difficulty of obtaining complete multi-user FoV information, which degrades the prediction performance. This article proposes a spherical convolution-empowered FoV prediction method, which is a multi-source prediction framework combining salient features extracted from 360-degree video with limited FoV feedback information. A spherical convolutional neural network is used instead of a traditional two-dimensional convolutional neural network to eliminate the problem of weight sharing failure caused by video projection distortion. Specifically, salient spatial-temporal features are extracted through a spherical convolution-based saliency detection model, after which the limited feedback FoV information is represented as a time-series model based on a spherical convolution-empowered gated recurrent unit network. Finally, the extracted salient video features are combined to predict future user FoVs. The experimental results show that the performance of the proposed method is better than other prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助现实的书易采纳,获得10
2秒前
Nicole完成签到 ,获得积分10
5秒前
苏苏苏完成签到,获得积分10
5秒前
小卷粉完成签到 ,获得积分10
6秒前
6秒前
爆米花应助可靠的南露采纳,获得10
7秒前
zt1812431172完成签到,获得积分10
8秒前
千里江山一只蝇完成签到,获得积分10
8秒前
小班发布了新的文献求助10
11秒前
syqlyd完成签到 ,获得积分10
11秒前
1111完成签到,获得积分10
12秒前
乐乐应助洁净的钢笔采纳,获得10
13秒前
罗亚亚完成签到,获得积分10
15秒前
16秒前
昏睡的蟠桃应助天气好好采纳,获得50
17秒前
CodeCraft应助sjy采纳,获得10
17秒前
scichu完成签到,获得积分20
18秒前
18秒前
18秒前
zk_orange发布了新的文献求助10
20秒前
搜集达人应助呆萌冷风采纳,获得10
22秒前
22秒前
cnm发布了新的文献求助10
23秒前
23秒前
23秒前
生产队的LV完成签到,获得积分10
25秒前
清脆香萱完成签到,获得积分10
28秒前
28秒前
白色风车发布了新的文献求助10
28秒前
HORSE047发布了新的文献求助10
28秒前
赘婿应助Coco采纳,获得10
28秒前
chenxi完成签到 ,获得积分10
29秒前
Lucas应助EthanChan采纳,获得10
29秒前
量子星尘发布了新的文献求助10
30秒前
33发布了新的文献求助10
31秒前
外向从灵发布了新的文献求助10
31秒前
呼呼呼完成签到,获得积分10
31秒前
31秒前
闪闪的发布了新的文献求助10
31秒前
ED应助香香采纳,获得10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958225
求助须知:如何正确求助?哪些是违规求助? 3504388
关于积分的说明 11118283
捐赠科研通 3235682
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565