亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spherical Convolution Empowered Viewport Prediction in 360 Video Multicast with Limited FoV Feedback

计算机科学 卷积(计算机科学) 人工智能 失真(音乐) 卷积神经网络 计算机视觉 视区 钥匙(锁) 视野 人工神经网络 放大器 计算机网络 带宽(计算) 计算机安全
作者
Jie Li,Litao Han,Chong Zhang,Qiyue Li,Zhi Liu
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (1): 1-23 被引量:23
标识
DOI:10.1145/3511603
摘要

Field of view (FoV) prediction is critical in 360-degree video multicast, which is a key component of the emerging virtual reality and augmented reality applications. Most of the current prediction methods combining saliency detection and FoV information neither take into account that the distortion of projected 360-degree videos can invalidate the weight sharing of traditional convolutional networks nor do they adequately consider the difficulty of obtaining complete multi-user FoV information, which degrades the prediction performance. This article proposes a spherical convolution-empowered FoV prediction method, which is a multi-source prediction framework combining salient features extracted from 360-degree video with limited FoV feedback information. A spherical convolutional neural network is used instead of a traditional two-dimensional convolutional neural network to eliminate the problem of weight sharing failure caused by video projection distortion. Specifically, salient spatial-temporal features are extracted through a spherical convolution-based saliency detection model, after which the limited feedback FoV information is represented as a time-series model based on a spherical convolution-empowered gated recurrent unit network. Finally, the extracted salient video features are combined to predict future user FoVs. The experimental results show that the performance of the proposed method is better than other prediction methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞快的笑白应助wuyy采纳,获得10
1秒前
希望天下0贩的0应助xuz采纳,获得10
1秒前
FashionBoy应助蜘蛛侠采纳,获得10
5秒前
乐乐应助迷路的尔竹采纳,获得10
11秒前
Yygz314完成签到,获得积分10
11秒前
liuynnn完成签到,获得积分20
12秒前
webmaster完成签到,获得积分10
16秒前
NexusExplorer应助坩埚甘茶白采纳,获得10
19秒前
阳光迎夏完成签到 ,获得积分10
21秒前
21秒前
充电宝应助xuz采纳,获得10
23秒前
23秒前
益笙鸿老板完成签到 ,获得积分10
24秒前
SiboN完成签到,获得积分10
25秒前
张流筝完成签到 ,获得积分10
25秒前
25秒前
高兴可乐完成签到,获得积分20
30秒前
liuynnn发布了新的文献求助10
31秒前
平凡完成签到,获得积分10
32秒前
wanci应助开朗问晴采纳,获得10
32秒前
36秒前
42秒前
所所应助xuz采纳,获得10
43秒前
华仔应助Bokuto采纳,获得10
45秒前
老王发布了新的文献求助10
50秒前
充电宝应助江经纬采纳,获得10
50秒前
李爱国应助强健的长颈鹿采纳,获得10
54秒前
戳戳完成签到 ,获得积分10
56秒前
搜集达人应助德尔塔捱斯采纳,获得10
58秒前
完美世界应助xuz采纳,获得10
1分钟前
1分钟前
科目三应助xalone采纳,获得10
1分钟前
1分钟前
1分钟前
111关闭了111文献求助
1分钟前
1分钟前
lokiyyy完成签到,获得积分10
1分钟前
时光机带哥走完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664012
求助须知:如何正确求助?哪些是违规求助? 4856247
关于积分的说明 15106917
捐赠科研通 4822415
什么是DOI,文献DOI怎么找? 2581446
邀请新用户注册赠送积分活动 1535597
关于科研通互助平台的介绍 1493881