清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning-Based Perihematomal Tissue Features to Predict Clinical Outcome after Spontaneous Intracerebral Hemorrhage

医学 改良兰金量表 血肿 脑出血 接收机工作特性 无线电技术 逻辑回归 放射科 曲线下面积 曲线下面积 格拉斯哥昏迷指数 外科 内科学 缺血性中风 缺血 药代动力学
作者
Xin Qi,Guorui Hu,Haiyan Sun,Zhigeng Chen,Chao Yang
出处
期刊:Journal of stroke and cerebrovascular diseases [Elsevier]
卷期号:31 (6): 106475-106475 被引量:10
标识
DOI:10.1016/j.jstrokecerebrovasdis.2022.106475
摘要

To explore whether radiomic features of perihematomal tissue can improve the forecasting accuracy for the prognosis of patients with an intracerebral hemorrhage (ICH).In total, 118 ICH patients were retrospectively studied that had a clinical and radiological diagnosis of spontaneous ICH. The functional outcome 3 months after ictus was measured using the modified Rankin Scale (mRS), which was divided into good (mRS ≤ 2) and poor outcomes (mRS > 2). A total of 2260 radiomics features were obtained from non-contrast computer tomography (NCCT) images, with 1130 features extracted from the hematoma and the hematoma plus perihematoma. The high-dimensional data was modeled by a logistic regression algorithm and the accuracy of the model was verified by five-fold cross-validation. The predictive performance of radiomics models was assessed by the area under the receiver operating characteristic (ROC) curve.In the test set, the mean ROC area under the curve (AUC) of the hematoma set to predict the prognosis of ICH was 0.83, and the specificity and sensitivity were 78% and 81%, respectively. When the hematoma and perihematomal tissue were combined, the mean AUC increased to 0.88, and the specificity and sensitivity reached 85% and 84%, respectively. The hematoma plus perihematoma model showed a significantly higher AUC and specificity.Analysis of the hematoma and perihematomal tissue NCCT-based radiomics could potentially identify the progression of a hematoma more accurately and could be a valuable clinical target to enhance the prediction of outcomes in patients with ICH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chichenglin完成签到 ,获得积分10
1秒前
ww完成签到,获得积分10
6秒前
31秒前
lovexa完成签到,获得积分10
43秒前
忘忧Aquarius完成签到,获得积分10
44秒前
小西完成签到 ,获得积分10
50秒前
XHH完成签到 ,获得积分0
53秒前
天边的云彩完成签到 ,获得积分10
1分钟前
烂漫的蜡烛完成签到 ,获得积分10
1分钟前
1分钟前
大方的笑萍完成签到 ,获得积分10
1分钟前
picapica668发布了新的文献求助30
1分钟前
picapica668完成签到,获得积分10
1分钟前
Sophie完成签到 ,获得积分10
1分钟前
1分钟前
zh完成签到 ,获得积分10
1分钟前
1分钟前
caipei发布了新的文献求助10
2分钟前
传奇3应助程翠丝采纳,获得20
2分钟前
2分钟前
程翠丝发布了新的文献求助20
2分钟前
creep2020完成签到,获得积分10
2分钟前
斯文败类应助baobeikk采纳,获得10
2分钟前
Andy_2024应助科研通管家采纳,获得30
2分钟前
2分钟前
2分钟前
星火发布了新的文献求助10
2分钟前
baobeikk发布了新的文献求助10
2分钟前
2分钟前
无名完成签到 ,获得积分10
2分钟前
天天快乐应助星火采纳,获得10
2分钟前
小强完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
汉堡包应助baobeikk采纳,获得10
2分钟前
2分钟前
suiwuya完成签到,获得积分10
3分钟前
baobeikk发布了新的文献求助10
3分钟前
朗月发布了新的文献求助30
3分钟前
万能图书馆应助baobeikk采纳,获得10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466837
求助须知:如何正确求助?哪些是违规求助? 3059674
关于积分的说明 9067352
捐赠科研通 2750142
什么是DOI,文献DOI怎么找? 1509065
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696913