数学优化
稳健优化
数学
非线性系统
对偶(语法数字)
集合(抽象数据类型)
凸优化
缩小
最优化问题
正多边形
计算机科学
艺术
物理
几何学
文学类
量子力学
程序设计语言
作者
Frans J. C. T. de Ruiter,Jianzhe Zhen,Dick den Hertog
出处
期刊:Operations Research
[Institute for Operations Research and the Management Sciences]
日期:2023-09-01
卷期号:71 (5): 1794-1799
被引量:3
标识
DOI:10.1287/opre.2022.2289
摘要
In “Dual Approach for Two-Stage Robust Nonlinear Optimization,” de Ruiter, Zhen, and den Hertog study adjustable robust minimization problems where the objective or constraints depend in a convex way on the adjustable variables. They reformulate the original adjustable robust nonlinear problem with a polyhedral uncertainty set into an equivalent adjustable robust linear problem, for which all existing approaches for adjustable robust linear problems can be used. The reformulation is obtained by first dualizing over the adjustable variables and then over the uncertain parameters. The polyhedral structure of the uncertainty set then appears in the linear constraints of the dualized problem, and the nonlinear functions of the adjustable variables in the original problem appear in the uncertainty set of the dualized problem. The authors show how to recover linear decision rules to the original primal problem and how to generate bounds on its optimal objective value.
科研通智能强力驱动
Strongly Powered by AbleSci AI