Deep learning-based fast detection of apparent concrete crack in slab tracks with dilated convolution

厚板 稳健性(进化) 卷积(计算机科学) 耐久性 结构工程 计算机科学 试验装置 材料科学 人工智能 模式识别(心理学) 人工神经网络 工程类 数据库 生物化学 基因 化学
作者
Wenlong Ye,Shijie Deng,Juanjuan Ren,Xue-shan Xu,Kaiyao Zhang,Wei Du
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:329: 127157-127157 被引量:20
标识
DOI:10.1016/j.conbuildmat.2022.127157
摘要

Slab tracks exposed to complicated environmental factors over a long period can cause cracks in the concrete, and if these cracks gradually expand, the concrete’s durability and service life will be greatly impacted. How to quickly and effectively detect concrete cracks has become an urgent challenge during the maintenance and repair of high-speed railway slab tracks. In this study, a large number of images of concrete cracks were collected in a database, and STCNet Ⅰ, a fast detection network architecture using dilated convolution based on deep learning, was proposed to detect apparent concrete cracks in slab tracks. After that, the watershed algorithm was used to segment the detected cracks. The results show that: I) compared with traditional network models, the STCNet Ⅰ provides a faster calculation at lower space complexity. The number of parameters used in this network is reduced by 96.03% and 93.28%, respectively compared with that in the VGG 16 and ResNet 50, and the time complexity is lower, with the calculation time reduced by 49.94% and 73.28%, respectively; II) the average recognition accuracy on the training set and the validation set reached as high as 99.71% and 99.33%, respectively, proving the robustness of the model; III) the accuracy and F1 score in the test samples of concrete crack reached 99.54% and 99.54%, indicating the strong generalization ability of the model; and IV) the concrete crack area was accurately detected, and the crack contour was fully closed and continuous. The research results from this paper provide an improved detection method of slab tracks and promote the fine detection and maintenance of the apparent concrete of slab tracks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
悦耳静枫完成签到,获得积分10
刚刚
刚刚
蓝幻雷发布了新的文献求助10
1秒前
1秒前
传奇3应助苏世誉采纳,获得10
1秒前
赘婿应助HHHHH采纳,获得10
1秒前
pilgrim发布了新的文献求助10
2秒前
七七完成签到,获得积分10
2秒前
科目三应助苏世誉采纳,获得10
2秒前
田様应助苏世誉采纳,获得10
2秒前
852应助苏世誉采纳,获得10
2秒前
五六七发布了新的文献求助10
2秒前
李健应助苏世誉采纳,获得10
3秒前
善学以致用应助苏世誉采纳,获得10
3秒前
3秒前
4秒前
CipherSage应助豆豆采纳,获得10
4秒前
LaInh发布了新的文献求助10
5秒前
vividzxm完成签到,获得积分10
5秒前
慕青应助小杰采纳,获得10
6秒前
喵喵完成签到,获得积分10
6秒前
6秒前
shenwei发布了新的文献求助10
6秒前
暮光之城发布了新的文献求助10
6秒前
6秒前
科研通AI6应助整齐百褶裙采纳,获得10
6秒前
凯隐皇帝完成签到,获得积分20
6秒前
6秒前
7秒前
Miss发布了新的文献求助10
7秒前
7秒前
7秒前
lll发布了新的文献求助10
7秒前
8秒前
9秒前
阔达千萍应助甜美网络采纳,获得10
9秒前
10秒前
传奇3应助erdongsir采纳,获得10
11秒前
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341164
求助须知:如何正确求助?哪些是违规求助? 4477459
关于积分的说明 13935565
捐赠科研通 4373515
什么是DOI,文献DOI怎么找? 2403031
邀请新用户注册赠送积分活动 1395924
关于科研通互助平台的介绍 1367897