Deep learning-based fast detection of apparent concrete crack in slab tracks with dilated convolution

厚板 稳健性(进化) 卷积(计算机科学) 耐久性 结构工程 计算机科学 试验装置 材料科学 人工智能 模式识别(心理学) 人工神经网络 工程类 数据库 生物化学 化学 基因
作者
Wenlong Ye,Shijie Deng,Juanjuan Ren,Xue-shan Xu,Kaiyao Zhang,Wei Du
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:329: 127157-127157 被引量:63
标识
DOI:10.1016/j.conbuildmat.2022.127157
摘要

Slab tracks exposed to complicated environmental factors over a long period can cause cracks in the concrete, and if these cracks gradually expand, the concrete’s durability and service life will be greatly impacted. How to quickly and effectively detect concrete cracks has become an urgent challenge during the maintenance and repair of high-speed railway slab tracks. In this study, a large number of images of concrete cracks were collected in a database, and STCNet Ⅰ, a fast detection network architecture using dilated convolution based on deep learning, was proposed to detect apparent concrete cracks in slab tracks. After that, the watershed algorithm was used to segment the detected cracks. The results show that: I) compared with traditional network models, the STCNet Ⅰ provides a faster calculation at lower space complexity. The number of parameters used in this network is reduced by 96.03% and 93.28%, respectively compared with that in the VGG 16 and ResNet 50, and the time complexity is lower, with the calculation time reduced by 49.94% and 73.28%, respectively; II) the average recognition accuracy on the training set and the validation set reached as high as 99.71% and 99.33%, respectively, proving the robustness of the model; III) the accuracy and F1 score in the test samples of concrete crack reached 99.54% and 99.54%, indicating the strong generalization ability of the model; and IV) the concrete crack area was accurately detected, and the crack contour was fully closed and continuous. The research results from this paper provide an improved detection method of slab tracks and promote the fine detection and maintenance of the apparent concrete of slab tracks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
5秒前
方方发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
7秒前
高赛文发布了新的文献求助10
7秒前
7秒前
lmm完成签到 ,获得积分10
7秒前
8秒前
在水一方应助cheng采纳,获得10
9秒前
stanfordlee发布了新的文献求助10
10秒前
FashionBoy应助温柔白玉采纳,获得10
11秒前
11秒前
一一一应助YueYue采纳,获得10
11秒前
邓佳鑫Alan应助YueYue采纳,获得10
11秒前
cy完成签到,获得积分10
11秒前
动人的易烟完成签到,获得积分20
12秒前
科研通AI6应助雪白绿旋采纳,获得10
12秒前
昵称发布了新的文献求助10
13秒前
wxt发布了新的文献求助10
13秒前
英吉利25发布了新的文献求助30
15秒前
鱼雷完成签到,获得积分10
16秒前
xjtuwang0618完成签到,获得积分10
18秒前
18秒前
19秒前
蓓蓓完成签到,获得积分10
20秒前
科研通AI6应助多情的忆之采纳,获得30
21秒前
Akim应助LaTeXer采纳,获得50
22秒前
阿黄完成签到,获得积分10
22秒前
22秒前
琳io发布了新的文献求助10
22秒前
方方完成签到,获得积分10
24秒前
Tong123发布了新的文献求助10
24秒前
唐唯一发布了新的文献求助10
24秒前
25秒前
26秒前
大模型应助方方采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536758
求助须知:如何正确求助?哪些是违规求助? 4624342
关于积分的说明 14591700
捐赠科研通 4564904
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480738
关于科研通互助平台的介绍 1451989