Deep learning-based fast detection of apparent concrete crack in slab tracks with dilated convolution

厚板 稳健性(进化) 卷积(计算机科学) 耐久性 结构工程 计算机科学 试验装置 材料科学 人工智能 模式识别(心理学) 人工神经网络 工程类 数据库 生物化学 化学 基因
作者
Wenlong Ye,Shijie Deng,Juanjuan Ren,Xue-shan Xu,Kaiyao Zhang,Wei Du
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:329: 127157-127157 被引量:20
标识
DOI:10.1016/j.conbuildmat.2022.127157
摘要

Slab tracks exposed to complicated environmental factors over a long period can cause cracks in the concrete, and if these cracks gradually expand, the concrete’s durability and service life will be greatly impacted. How to quickly and effectively detect concrete cracks has become an urgent challenge during the maintenance and repair of high-speed railway slab tracks. In this study, a large number of images of concrete cracks were collected in a database, and STCNet Ⅰ, a fast detection network architecture using dilated convolution based on deep learning, was proposed to detect apparent concrete cracks in slab tracks. After that, the watershed algorithm was used to segment the detected cracks. The results show that: I) compared with traditional network models, the STCNet Ⅰ provides a faster calculation at lower space complexity. The number of parameters used in this network is reduced by 96.03% and 93.28%, respectively compared with that in the VGG 16 and ResNet 50, and the time complexity is lower, with the calculation time reduced by 49.94% and 73.28%, respectively; II) the average recognition accuracy on the training set and the validation set reached as high as 99.71% and 99.33%, respectively, proving the robustness of the model; III) the accuracy and F1 score in the test samples of concrete crack reached 99.54% and 99.54%, indicating the strong generalization ability of the model; and IV) the concrete crack area was accurately detected, and the crack contour was fully closed and continuous. The research results from this paper provide an improved detection method of slab tracks and promote the fine detection and maintenance of the apparent concrete of slab tracks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助sqf1209采纳,获得10
1秒前
2秒前
田田完成签到 ,获得积分10
2秒前
火星上的毛豆完成签到,获得积分10
2秒前
恒牙完成签到 ,获得积分10
3秒前
ylq发布了新的文献求助10
3秒前
3秒前
hui发布了新的文献求助30
3秒前
zm发布了新的文献求助10
4秒前
5秒前
大俊俊完成签到,获得积分10
6秒前
liuhongcan完成签到,获得积分10
10秒前
11秒前
科研达人发布了新的文献求助10
12秒前
耀出彩完成签到,获得积分10
14秒前
QixuGuo发布了新的文献求助10
14秒前
16秒前
17秒前
生动路人应助默默采纳,获得20
18秒前
21秒前
23秒前
24秒前
图图发布了新的文献求助10
24秒前
26秒前
27秒前
27秒前
dfhh发布了新的文献求助10
27秒前
Zjx发布了新的文献求助10
30秒前
30秒前
31秒前
31秒前
lx840518完成签到 ,获得积分10
35秒前
汉堡包应助Alioth采纳,获得10
35秒前
xiao发布了新的文献求助10
36秒前
汉堡包应助dfhh采纳,获得10
39秒前
39秒前
我先睡了应助封闭货车采纳,获得10
39秒前
39秒前
谢灵运完成签到,获得积分10
42秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993032
求助须知:如何正确求助?哪些是违规求助? 3533888
关于积分的说明 11264048
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882974
科研通“疑难数据库(出版商)”最低求助积分说明 809629