Clinical metabolomics for inborn errors of metabolism

代谢组学 计算生物学 代谢物 代谢物分析 代谢组 生物信息学 代谢途径 新陈代谢 生物 计算机科学 生物化学
作者
Lisa A. Ford,Matthew Mitchell,Jacob Wulff,Anne M. Evans,Adam D. Kennedy,Sarah H. Elsea,Bryan M. Wittmann,Douglas R. Toal
出处
期刊:Advances in Clinical Chemistry [Elsevier BV]
卷期号:: 79-138 被引量:5
标识
DOI:10.1016/bs.acc.2021.09.001
摘要

Metabolism is a highly regulated process that provides nutrients to cells and essential building blocks for the synthesis of protein, DNA and other macromolecules. In healthy biological systems, metabolism maintains a steady state in which the concentrations of metabolites are relatively constant yet are subject to metabolic demands and environmental stimuli. Rare genetic disorders, such as inborn errors of metabolism (IEM), cause defects in regulatory enzymes or proteins leading to metabolic pathway disruption and metabolite accumulation or deficiency. Traditionally, the laboratory diagnosis of IEMs has been limited to analytical methods that target specific metabolites such as amino acids and acyl carnitines. This approach is effective as a screening method for the most common IEM disorders but lacks the comprehensive coverage of metabolites that is necessary to identify rare disorders that present with nonspecific clinical symptoms. Fortunately, advancements in technology and data analytics has introduced a new field of study called metabolomics which has allowed scientists to perform comprehensive metabolite profiling of biological systems to provide insight into mechanism of action and gene function. Since metabolomics seeks to measure all small molecule metabolites in a biological specimen, it provides an innovative approach to evaluating disease in patients with rare genetic disorders. In this review we provide insight into the appropriate application of metabolomics in clinical settings. We discuss the advantages and limitations of the method and provide details related to the technology, data analytics and statistical modeling required for metabolomic profiling of patients with IEMs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷月寒寒大魔王给冷月寒寒大魔王的求助进行了留言
刚刚
南宫清涟应助ZZH采纳,获得10
1秒前
1秒前
cooling发布了新的文献求助10
1秒前
Ava应助Mia采纳,获得10
1秒前
Dream发布了新的文献求助10
1秒前
syy080837发布了新的文献求助10
1秒前
2秒前
斯文败类应助光亮绮山采纳,获得10
2秒前
只然完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
邓佳鑫Alan应助岁城采纳,获得10
3秒前
焦大大完成签到,获得积分10
3秒前
嘿休休发布了新的文献求助10
3秒前
所所应助1111采纳,获得10
3秒前
4秒前
阔达代芹发布了新的文献求助10
4秒前
华仔应助王大力采纳,获得10
4秒前
zgw发布了新的文献求助10
4秒前
椰椰豆沙应助ctttt采纳,获得10
5秒前
111完成签到 ,获得积分10
5秒前
5秒前
敬之发布了新的文献求助10
5秒前
yk完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
周小鱼发布了新的文献求助10
7秒前
善学以致用应助整齐的刚采纳,获得10
7秒前
Susco发布了新的文献求助10
7秒前
冷酷愚志完成签到,获得积分10
8秒前
lulu666发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
李y梅子发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482