Clinical metabolomics for inborn errors of metabolism

代谢组学 计算生物学 代谢物 代谢物分析 代谢组 生物信息学 代谢途径 新陈代谢 生物 计算机科学 生物化学
作者
Lisa A. Ford,Matthew Mitchell,Jacob Wulff,Anne M. Evans,Adam D. Kennedy,Sarah H. Elsea,Bryan M. Wittmann,Douglas R. Toal
出处
期刊:Advances in Clinical Chemistry [Elsevier BV]
卷期号:: 79-138 被引量:5
标识
DOI:10.1016/bs.acc.2021.09.001
摘要

Metabolism is a highly regulated process that provides nutrients to cells and essential building blocks for the synthesis of protein, DNA and other macromolecules. In healthy biological systems, metabolism maintains a steady state in which the concentrations of metabolites are relatively constant yet are subject to metabolic demands and environmental stimuli. Rare genetic disorders, such as inborn errors of metabolism (IEM), cause defects in regulatory enzymes or proteins leading to metabolic pathway disruption and metabolite accumulation or deficiency. Traditionally, the laboratory diagnosis of IEMs has been limited to analytical methods that target specific metabolites such as amino acids and acyl carnitines. This approach is effective as a screening method for the most common IEM disorders but lacks the comprehensive coverage of metabolites that is necessary to identify rare disorders that present with nonspecific clinical symptoms. Fortunately, advancements in technology and data analytics has introduced a new field of study called metabolomics which has allowed scientists to perform comprehensive metabolite profiling of biological systems to provide insight into mechanism of action and gene function. Since metabolomics seeks to measure all small molecule metabolites in a biological specimen, it provides an innovative approach to evaluating disease in patients with rare genetic disorders. In this review we provide insight into the appropriate application of metabolomics in clinical settings. We discuss the advantages and limitations of the method and provide details related to the technology, data analytics and statistical modeling required for metabolomic profiling of patients with IEMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
李健应助咩呀mie采纳,获得30
3秒前
Cleo应助doud采纳,获得10
4秒前
Ava应助潘少东采纳,获得10
4秒前
5秒前
5秒前
张再禹发布了新的文献求助10
5秒前
周周完成签到,获得积分10
6秒前
共享精神应助张天雨采纳,获得10
6秒前
天天下雨完成签到 ,获得积分10
7秒前
科研通AI5应助蜡笔小欣采纳,获得10
7秒前
7秒前
顾亦舟完成签到 ,获得积分10
7秒前
7秒前
7秒前
思源应助清脆如之采纳,获得10
8秒前
在水一方应助wjw采纳,获得10
8秒前
8秒前
青塘龙仔发布了新的文献求助10
8秒前
yyds发布了新的文献求助10
8秒前
8秒前
9秒前
猫一盒发布了新的文献求助10
9秒前
拼搏太英完成签到,获得积分10
9秒前
情怀应助独特百褶裙采纳,获得20
10秒前
10秒前
聿1988发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
研究牲发布了新的文献求助10
12秒前
12秒前
小爱同学发布了新的文献求助10
13秒前
13秒前
小文子完成签到,获得积分10
13秒前
13秒前
科研小裴发布了新的文献求助10
13秒前
机智的鲸鱼完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193943
求助须知:如何正确求助?哪些是违规求助? 4376306
关于积分的说明 13629155
捐赠科研通 4231222
什么是DOI,文献DOI怎么找? 2320866
邀请新用户注册赠送积分活动 1319114
关于科研通互助平台的介绍 1269445