水准点(测量)
计算机科学
航程(航空)
预测区间
区间(图论)
均方误差
回归
差异(会计)
机器学习
人工智能
过程(计算)
功能(生物学)
均方预测误差
数据挖掘
算法
统计
数学
会计
大地测量学
组合数学
进化生物学
业务
生物
地理
操作系统
材料科学
复合材料
作者
Kinjal Patel,Steven L. Waslander
出处
期刊:Cornell University - arXiv
日期:2022-01-01
被引量:4
标识
DOI:10.48550/arxiv.2202.09664
摘要
We propose a network architecture capable of reliably estimating uncertainty of regression based predictions without sacrificing accuracy. The current state-of-the-art uncertainty algorithms either fall short of achieving prediction accuracy comparable to the mean square error optimization or underestimate the variance of network predictions. We propose a decoupled network architecture that is capable of accomplishing both at the same time. We achieve this by breaking down the learning of prediction and prediction interval (PI) estimations into a two-stage training process. We use a custom loss function for learning a PI range around optimized mean estimation with a desired coverage of a proportion of the target labels within the PI range. We compare the proposed method with current state-of-the-art uncertainty quantification algorithms on synthetic datasets and UCI benchmarks, reducing the error in the predictions by 23 to 34% while maintaining 95% Prediction Interval Coverage Probability (PICP) for 7 out of 9 UCI benchmark datasets. We also examine the quality of our predictive uncertainty by evaluating on Active Learning and demonstrating 17 to 36% error reduction on UCI benchmarks.
科研通智能强力驱动
Strongly Powered by AbleSci AI