The evolution, evolvability and engineering of gene regulatory DNA

可进化性 生物 调节顺序 计算生物学 遗传学 基因调控网络 自然选择 稳健性(进化) 基因 人类进化遗传学 基因表达调控 选择(遗传算法) 基因表达 计算机科学 系统发育学 人工智能
作者
Eeshit Dhaval Vaishnav,Carl G. de Boer,Jennifer Molinet,Moran Yassour,Fan Lin,Xian Adiconis,Dawn Thompson,Joshua Z. Levin,Francisco A. Cubillos,Aviv Regev
出处
期刊:Nature [Nature Portfolio]
卷期号:603 (7901): 455-463 被引量:193
标识
DOI:10.1038/s41586-022-04506-6
摘要

Mutations in non-coding regulatory DNA sequences can alter gene expression, organismal phenotype and fitness1–3. Constructing complete fitness landscapes, in which DNA sequences are mapped to fitness, is a long-standing goal in biology, but has remained elusive because it is challenging to generalize reliably to vast sequence spaces4–6. Here we build sequence-to-expression models that capture fitness landscapes and use them to decipher principles of regulatory evolution. Using millions of randomly sampled promoter DNA sequences and their measured expression levels in the yeast Saccharomyces cerevisiae, we learn deep neural network models that generalize with excellent prediction performance, and enable sequence design for expression engineering. Using our models, we study expression divergence under genetic drift and strong-selection weak-mutation regimes to find that regulatory evolution is rapid and subject to diminishing returns epistasis; that conflicting expression objectives in different environments constrain expression adaptation; and that stabilizing selection on gene expression leads to the moderation of regulatory complexity. We present an approach for using such models to detect signatures of selection on expression from natural variation in regulatory sequences and use it to discover an instance of convergent regulatory evolution. We assess mutational robustness, finding that regulatory mutation effect sizes follow a power law, characterize regulatory evolvability, visualize promoter fitness landscapes, discover evolvability archetypes and illustrate the mutational robustness of natural regulatory sequence populations. Our work provides a general framework for designing regulatory sequences and addressing fundamental questions in regulatory evolution. A framework for studying and engineering gene regulatory DNA sequences, based on deep neural sequence-to-expression models trained on large-scale libraries of random DNA, provides insight into the evolution, evolvability and fitness landscapes of regulatory DNA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
祎橘发布了新的文献求助10
3秒前
陈tl完成签到,获得积分10
3秒前
英俊的铭应助化工渣渣采纳,获得10
3秒前
沉静雁兰应助南客行采纳,获得10
8秒前
luke17743508621完成签到 ,获得积分10
9秒前
9秒前
9秒前
zhangyu应助青青草采纳,获得10
9秒前
张雷应助Cindy采纳,获得40
11秒前
认真又亦完成签到 ,获得积分10
11秒前
11秒前
孙燕应助Wang0102采纳,获得10
13秒前
qyang发布了新的文献求助10
14秒前
xchen完成签到,获得积分20
15秒前
张爱学发布了新的文献求助10
16秒前
17秒前
17秒前
科研小菜鸡完成签到 ,获得积分10
18秒前
固的曼完成签到,获得积分10
18秒前
香蕉觅云应助wuy采纳,获得10
19秒前
chaoqi完成签到,获得积分20
19秒前
梁不正发布了新的文献求助50
20秒前
李Sir发布了新的文献求助10
20秒前
tamaco完成签到,获得积分10
22秒前
hututu发布了新的文献求助30
22秒前
小次之山发布了新的文献求助10
22秒前
华风完成签到,获得积分10
24秒前
欢檬应助麦子采纳,获得10
24秒前
恋雅颖月应助认真的白易采纳,获得10
25秒前
witty完成签到 ,获得积分10
28秒前
SciGPT应助单手开坦克采纳,获得10
29秒前
31秒前
33秒前
bangbangsh发布了新的文献求助10
33秒前
小二郎应助xiang采纳,获得10
33秒前
过分着迷发布了新的文献求助10
35秒前
35秒前
WAN发布了新的文献求助10
37秒前
化工渣渣发布了新的文献求助10
37秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992986
求助须知:如何正确求助?哪些是违规求助? 3533726
关于积分的说明 11263679
捐赠科研通 3273550
什么是DOI,文献DOI怎么找? 1806095
邀请新用户注册赠送积分活动 882942
科研通“疑难数据库(出版商)”最低求助积分说明 809629