已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction and evaluation of fuel properties of hydrochar from waste solid biomass: Machine learning algorithm based on proposed PSO–NN model

水热碳化 生物量(生态学) 粒子群优化 原材料 燃烧热 固体燃料 人工神经网络 含水量 趋同(经济学) 环境科学 制浆造纸工业 产量(工程) 算法 工艺工程 材料科学 生物系统 计算机科学 碳化 化学 燃烧 工程类 机器学习 复合材料 地质学 扫描电子显微镜 海洋学 有机化学 经济增长 经济 生物 岩土工程
作者
Lin Mu,Zhen Wang,Di Wu,Liang Zhao,Hongchao Yin
出处
期刊:Fuel [Elsevier]
卷期号:318: 123644-123644 被引量:52
标识
DOI:10.1016/j.fuel.2022.123644
摘要

Hydrothermal carbonization is an effective and environmentally friendly biomass pretreatment technology, which converts high moisture biomass into homogeneous, carbon–rich, and high calorific value solid hydrochar. This study aimed to predict the fuel properties of the hydrochar based on hydrothermal conditions and biomass characteristics by machine learning (ML) models. Artificial neural network (ANN) combined with particle swarm optimization (PSO) algorithm was proposed and developed based on 296 data points collected from abundant previous studies, and the prediction capability is analyzed with ordinary ANN model. The results showed that particle swarm optimization–neural network (PSO–NN) model with optimal hyper–parameters can reduce iteration time, and improve the stability and accuracy of ANN model. Fuels properties of hydrochar were predicted by PSO–NN model with R2 greater than 0.85 and the convergence speed is increased by 26.8%. Feature importance and correlation were explored by the integration of PSO–NN model and model explainer based on SHAP methodology. The result showed that the carbon content in raw biomass was the significant feature impacting mass yield, and the mass yield of hydrochar mainly depended on elemental composition of feedstock. The HTC temperature of water is the most important factor affecting HHV of the hydrochar, so raising hydrothermal temperature is the best way to improve the HHV. N content was considered as the most important parameter for the N/C molar ratio among all the evaluated features. The O content of the raw biomass had obvious influence on the ASH content of hydrochar, and the influence of operating conditions for ash content changes only accounted for 14.3%, which indicated that the removing efficiency of ash from biomass was low only by changing the operating conditions. Both DHD and DCD of hydrochars were most affected by temperature, and the ash content played a significant role in the prediction of the DHD. Furthermore, we found that most of ash remained in feedstock negatively affected DHD of the hydrochar but had a positive effect on DCD. The PSO–NN model can be used for pre–experiment condition design, which is convenient for researchers to obtain ideal hydrothermal products.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
younger完成签到,获得积分10
刚刚
ZTLlele完成签到 ,获得积分10
刚刚
刚刚
思源应助洞两采纳,获得10
1秒前
双青豆完成签到 ,获得积分10
1秒前
OnlyHarbour完成签到,获得积分10
2秒前
5秒前
假茂茂发布了新的文献求助10
6秒前
上蓝南宫完成签到,获得积分20
7秒前
OnlyHarbour发布了新的文献求助10
8秒前
10秒前
mwm完成签到 ,获得积分10
11秒前
Ava应助上蓝南宫采纳,获得10
11秒前
呵呵哒完成签到,获得积分10
11秒前
阿朱关注了科研通微信公众号
11秒前
12秒前
czcmh给加菲丰丰的求助进行了留言
14秒前
山月系晚星完成签到,获得积分10
14秒前
呵呵哒发布了新的文献求助80
15秒前
注恤明完成签到,获得积分10
16秒前
糊涂的蛋挞完成签到 ,获得积分20
16秒前
sep完成签到 ,获得积分10
16秒前
17秒前
现代期待完成签到,获得积分10
17秒前
无花果应助小池同学采纳,获得10
18秒前
18秒前
呆萌海亦完成签到,获得积分10
19秒前
younger发布了新的文献求助10
24秒前
26秒前
26秒前
lmy完成签到 ,获得积分10
29秒前
Bluestar完成签到,获得积分10
29秒前
Attention完成签到,获得积分10
29秒前
POJING发布了新的文献求助30
30秒前
阿朱发布了新的文献求助10
32秒前
myg123完成签到 ,获得积分10
32秒前
33秒前
科研通AI2S应助糊涂的蛋挞采纳,获得10
36秒前
aillonm发布了新的文献求助10
37秒前
小蘑菇应助小麻采纳,获得30
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509080
求助须知:如何正确求助?哪些是违规求助? 4604125
关于积分的说明 14489198
捐赠科研通 4538775
什么是DOI,文献DOI怎么找? 2487190
邀请新用户注册赠送积分活动 1469617
关于科研通互助平台的介绍 1441838