Prediction and evaluation of fuel properties of hydrochar from waste solid biomass: Machine learning algorithm based on proposed PSO–NN model

水热碳化 生物量(生态学) 粒子群优化 原材料 燃烧热 固体燃料 人工神经网络 含水量 趋同(经济学) 环境科学 制浆造纸工业 产量(工程) 算法 工艺工程 材料科学 生物系统 计算机科学 碳化 化学 燃烧 工程类 机器学习 复合材料 地质学 有机化学 经济 岩土工程 海洋学 生物 经济增长 扫描电子显微镜
作者
Lin Mu,Zhen Wang,Di Wu,Liang Zhao,Hongchao Yin
出处
期刊:Fuel [Elsevier BV]
卷期号:318: 123644-123644 被引量:52
标识
DOI:10.1016/j.fuel.2022.123644
摘要

Hydrothermal carbonization is an effective and environmentally friendly biomass pretreatment technology, which converts high moisture biomass into homogeneous, carbon–rich, and high calorific value solid hydrochar. This study aimed to predict the fuel properties of the hydrochar based on hydrothermal conditions and biomass characteristics by machine learning (ML) models. Artificial neural network (ANN) combined with particle swarm optimization (PSO) algorithm was proposed and developed based on 296 data points collected from abundant previous studies, and the prediction capability is analyzed with ordinary ANN model. The results showed that particle swarm optimization–neural network (PSO–NN) model with optimal hyper–parameters can reduce iteration time, and improve the stability and accuracy of ANN model. Fuels properties of hydrochar were predicted by PSO–NN model with R2 greater than 0.85 and the convergence speed is increased by 26.8%. Feature importance and correlation were explored by the integration of PSO–NN model and model explainer based on SHAP methodology. The result showed that the carbon content in raw biomass was the significant feature impacting mass yield, and the mass yield of hydrochar mainly depended on elemental composition of feedstock. The HTC temperature of water is the most important factor affecting HHV of the hydrochar, so raising hydrothermal temperature is the best way to improve the HHV. N content was considered as the most important parameter for the N/C molar ratio among all the evaluated features. The O content of the raw biomass had obvious influence on the ASH content of hydrochar, and the influence of operating conditions for ash content changes only accounted for 14.3%, which indicated that the removing efficiency of ash from biomass was low only by changing the operating conditions. Both DHD and DCD of hydrochars were most affected by temperature, and the ash content played a significant role in the prediction of the DHD. Furthermore, we found that most of ash remained in feedstock negatively affected DHD of the hydrochar but had a positive effect on DCD. The PSO–NN model can be used for pre–experiment condition design, which is convenient for researchers to obtain ideal hydrothermal products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助Z鸡汤采纳,获得20
刚刚
1秒前
tony96完成签到,获得积分20
2秒前
2秒前
ASIS发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
xuxingjie发布了新的文献求助10
4秒前
大个应助Elaine采纳,获得10
5秒前
mango发布了新的文献求助10
6秒前
研友_nEWaD8完成签到,获得积分10
7秒前
zzz完成签到,获得积分10
7秒前
sweets完成签到,获得积分10
9秒前
LL发布了新的文献求助30
9秒前
9秒前
11秒前
www完成签到,获得积分10
12秒前
13秒前
13秒前
222发布了新的文献求助10
13秒前
黄量杰成发布了新的文献求助10
14秒前
15秒前
15秒前
sansan完成签到 ,获得积分10
16秒前
manru发布了新的文献求助10
16秒前
16秒前
17秒前
ASIS完成签到,获得积分10
17秒前
刘祥发布了新的文献求助10
17秒前
虚拟的柠檬完成签到,获得积分10
18秒前
19秒前
run发布了新的文献求助50
20秒前
赵乂发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
20秒前
lyt发布了新的文献求助10
21秒前
yunyueqixun完成签到 ,获得积分10
21秒前
倪侃发布了新的文献求助10
21秒前
时567完成签到,获得积分10
21秒前
manru完成签到,获得积分10
21秒前
22秒前
sure发布了新的文献求助10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125100
求助须知:如何正确求助?哪些是违规求助? 4329107
关于积分的说明 13489886
捐赠科研通 4163829
什么是DOI,文献DOI怎么找? 2282591
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222983