Prediction and evaluation of fuel properties of hydrochar from waste solid biomass: Machine learning algorithm based on proposed PSO–NN model

水热碳化 生物量(生态学) 粒子群优化 原材料 燃烧热 固体燃料 人工神经网络 含水量 趋同(经济学) 环境科学 制浆造纸工业 产量(工程) 算法 工艺工程 材料科学 生物系统 计算机科学 碳化 化学 燃烧 工程类 机器学习 复合材料 地质学 扫描电子显微镜 海洋学 有机化学 经济增长 经济 生物 岩土工程
作者
Lin Mu,Zhen Wang,Di Wu,Liang Zhao,Hongchao Yin
出处
期刊:Fuel [Elsevier]
卷期号:318: 123644-123644 被引量:52
标识
DOI:10.1016/j.fuel.2022.123644
摘要

Hydrothermal carbonization is an effective and environmentally friendly biomass pretreatment technology, which converts high moisture biomass into homogeneous, carbon–rich, and high calorific value solid hydrochar. This study aimed to predict the fuel properties of the hydrochar based on hydrothermal conditions and biomass characteristics by machine learning (ML) models. Artificial neural network (ANN) combined with particle swarm optimization (PSO) algorithm was proposed and developed based on 296 data points collected from abundant previous studies, and the prediction capability is analyzed with ordinary ANN model. The results showed that particle swarm optimization–neural network (PSO–NN) model with optimal hyper–parameters can reduce iteration time, and improve the stability and accuracy of ANN model. Fuels properties of hydrochar were predicted by PSO–NN model with R2 greater than 0.85 and the convergence speed is increased by 26.8%. Feature importance and correlation were explored by the integration of PSO–NN model and model explainer based on SHAP methodology. The result showed that the carbon content in raw biomass was the significant feature impacting mass yield, and the mass yield of hydrochar mainly depended on elemental composition of feedstock. The HTC temperature of water is the most important factor affecting HHV of the hydrochar, so raising hydrothermal temperature is the best way to improve the HHV. N content was considered as the most important parameter for the N/C molar ratio among all the evaluated features. The O content of the raw biomass had obvious influence on the ASH content of hydrochar, and the influence of operating conditions for ash content changes only accounted for 14.3%, which indicated that the removing efficiency of ash from biomass was low only by changing the operating conditions. Both DHD and DCD of hydrochars were most affected by temperature, and the ash content played a significant role in the prediction of the DHD. Furthermore, we found that most of ash remained in feedstock negatively affected DHD of the hydrochar but had a positive effect on DCD. The PSO–NN model can be used for pre–experiment condition design, which is convenient for researchers to obtain ideal hydrothermal products.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗静完成签到,获得积分10
刚刚
lyyu完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
十二发布了新的文献求助10
2秒前
2秒前
2秒前
烟花应助饶天源采纳,获得10
2秒前
优雅草丛完成签到,获得积分10
2秒前
3秒前
斯文紫菜完成签到 ,获得积分10
3秒前
爆米花应助WangJ1018采纳,获得10
3秒前
3秒前
4秒前
科研通AI6.1应助咔咔采纳,获得10
4秒前
笨笨雨兰完成签到 ,获得积分20
5秒前
5秒前
李健应助hui_L采纳,获得10
6秒前
斯文败类应助Myrna采纳,获得10
6秒前
上官若男应助Myrna采纳,获得10
6秒前
英姑应助Myrna采纳,获得10
6秒前
6秒前
爆米花应助Myrna采纳,获得10
6秒前
充电宝应助Myrna采纳,获得10
6秒前
FashionBoy应助Myrna采纳,获得10
6秒前
脑洞疼应助Myrna采纳,获得10
6秒前
orixero应助Myrna采纳,获得10
6秒前
酷波er应助Myrna采纳,获得10
6秒前
6秒前
韩韩韩完成签到,获得积分10
6秒前
王璐瑶发布了新的文献求助10
7秒前
7秒前
wcy发布了新的文献求助10
8秒前
Molly0303发布了新的文献求助10
8秒前
梨儿萌死发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
英俊的铭应助含蓄觅山采纳,获得10
10秒前
lulululu完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768975
求助须知:如何正确求助?哪些是违规求助? 5577609
关于积分的说明 15420006
捐赠科研通 4902764
什么是DOI,文献DOI怎么找? 2637914
邀请新用户注册赠送积分活动 1585802
关于科研通互助平台的介绍 1540949