Prediction and evaluation of fuel properties of hydrochar from waste solid biomass: Machine learning algorithm based on proposed PSO–NN model

水热碳化 生物量(生态学) 粒子群优化 原材料 燃烧热 固体燃料 人工神经网络 含水量 趋同(经济学) 环境科学 制浆造纸工业 产量(工程) 算法 工艺工程 材料科学 生物系统 计算机科学 碳化 化学 燃烧 工程类 机器学习 复合材料 地质学 有机化学 经济 岩土工程 海洋学 生物 经济增长 扫描电子显微镜
作者
Lin Mu,Zhen Wang,Di Wu,Liang Zhao,Hongchao Yin
出处
期刊:Fuel [Elsevier BV]
卷期号:318: 123644-123644 被引量:52
标识
DOI:10.1016/j.fuel.2022.123644
摘要

Hydrothermal carbonization is an effective and environmentally friendly biomass pretreatment technology, which converts high moisture biomass into homogeneous, carbon–rich, and high calorific value solid hydrochar. This study aimed to predict the fuel properties of the hydrochar based on hydrothermal conditions and biomass characteristics by machine learning (ML) models. Artificial neural network (ANN) combined with particle swarm optimization (PSO) algorithm was proposed and developed based on 296 data points collected from abundant previous studies, and the prediction capability is analyzed with ordinary ANN model. The results showed that particle swarm optimization–neural network (PSO–NN) model with optimal hyper–parameters can reduce iteration time, and improve the stability and accuracy of ANN model. Fuels properties of hydrochar were predicted by PSO–NN model with R2 greater than 0.85 and the convergence speed is increased by 26.8%. Feature importance and correlation were explored by the integration of PSO–NN model and model explainer based on SHAP methodology. The result showed that the carbon content in raw biomass was the significant feature impacting mass yield, and the mass yield of hydrochar mainly depended on elemental composition of feedstock. The HTC temperature of water is the most important factor affecting HHV of the hydrochar, so raising hydrothermal temperature is the best way to improve the HHV. N content was considered as the most important parameter for the N/C molar ratio among all the evaluated features. The O content of the raw biomass had obvious influence on the ASH content of hydrochar, and the influence of operating conditions for ash content changes only accounted for 14.3%, which indicated that the removing efficiency of ash from biomass was low only by changing the operating conditions. Both DHD and DCD of hydrochars were most affected by temperature, and the ash content played a significant role in the prediction of the DHD. Furthermore, we found that most of ash remained in feedstock negatively affected DHD of the hydrochar but had a positive effect on DCD. The PSO–NN model can be used for pre–experiment condition design, which is convenient for researchers to obtain ideal hydrothermal products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻灯泡发布了新的文献求助10
1秒前
hhhi应助周雪娇采纳,获得10
3秒前
科研通AI5应助bnm采纳,获得10
4秒前
酷波er应助阿克66采纳,获得10
4秒前
5秒前
10秒前
001完成签到 ,获得积分10
11秒前
13秒前
bxg完成签到 ,获得积分10
13秒前
14秒前
yuaasusanaann发布了新的文献求助10
15秒前
失眠朋友完成签到,获得积分10
16秒前
困困赵发布了新的文献求助10
17秒前
彭于晏应助微笑的语芙采纳,获得10
17秒前
伏波完成签到,获得积分0
17秒前
Akim应助小狗采纳,获得30
17秒前
18秒前
21秒前
21秒前
sherryyijia完成签到 ,获得积分10
22秒前
tttp完成签到,获得积分10
22秒前
碧蓝莫言应助tclouds采纳,获得30
23秒前
23秒前
思源应助ming采纳,获得10
23秒前
Hello应助ming采纳,获得10
23秒前
脑洞疼应助ming采纳,获得30
23秒前
24秒前
24秒前
25秒前
WeiMooo发布了新的文献求助10
26秒前
好运小陈发布了新的文献求助10
27秒前
27秒前
bnm发布了新的文献求助10
29秒前
29秒前
Hello应助十九岁的时差采纳,获得10
29秒前
无奈的幻雪给无奈的幻雪的求助进行了留言
30秒前
xx发布了新的文献求助10
30秒前
31秒前
沉稳捺发布了新的文献求助10
31秒前
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999817
求助须知:如何正确求助?哪些是违规求助? 3539272
关于积分的说明 11276402
捐赠科研通 3277909
什么是DOI,文献DOI怎么找? 1807781
邀请新用户注册赠送积分活动 884231
科研通“疑难数据库(出版商)”最低求助积分说明 810142