Reconfigurable Synaptic and Neuronal Functions in a V/VOx/HfWOx/Pt Memristor for Nonpolar Spiking Convolutional Neural Network

记忆电阻器 材料科学 仿真 可重构性 卷积神经网络 计算机科学 尖峰神经网络 突触重量 人工神经网络 神经形态工程学 可靠性(半导体) 神经科学 人工智能 电子工程 物理 生物 工程类 经济 功率(物理) 电信 量子力学 经济增长
作者
Yaoyao Fu,Yue Zhou,Xiaodi Huang,Boyi Dong,Fuwei Zhuge,Yi Li,Yuhui He,Yang Chai,Xiangshui Miao
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:32 (23) 被引量:30
标识
DOI:10.1002/adfm.202111996
摘要

Abstract The fully memristive neural network consisting of the threshold switching (TS) material‐based electronic neurons and resistive switching (RS) one‐based synapses shows the potential for revolutionizing the energy and area efficiency in neuromorphic computing while being confronted with challenges such as reliability and process compatibility between memristive synaptic and neuronal devices. Here, a spiking convolutional neural network (SCNN) is constructed with the forming‐and‐annealing‐free V/VO x /HfWO x /Pt memristive devices. Specifically, both highly reliable RS (endurance >10 10 , on‐off ratio >10 3 ) and TS (endurance >10 12 ) are found in the same device by setting it at RRAM or selector mode with either the HfWO x or naturally oxidized VO x layers dominating the conductance tuning. Such reconfigurability enables the emulation of both synaptic and nonpolar neuronal behaviors within the same device. A V/VO x /HfWO x /Pt‐based hardware system is thus experimentally demonstrated at much simplified process complexity and higher reliability, in which typical neural dynamics including synaptic plasticity and nonpolar neuronal spiking response are imitated. At the network level, a fully memristive SCNN incorporating nonpolar neurons is proposed for the first time. The system level simulation shows competency in pattern recognition with a dramatically reduced hardware consumption, paving the way for implementing fully memristive intelligent systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咩了个咩发布了新的文献求助10
刚刚
刚刚
烂漫土豆完成签到,获得积分10
1秒前
Gyy完成签到,获得积分10
1秒前
ark861023发布了新的文献求助10
1秒前
在水一方应助科学家采纳,获得10
2秒前
z3Q应助Nowind采纳,获得10
2秒前
2秒前
畅快的荠完成签到,获得积分10
2秒前
香蕉觅云应助王算法采纳,获得10
4秒前
prosperp应助俊秀的幻桃采纳,获得10
4秒前
wlq完成签到,获得积分10
5秒前
kkdkg发布了新的文献求助10
5秒前
小马甲应助能干太清采纳,获得10
6秒前
深情安青应助小陈加油呀采纳,获得10
6秒前
123发布了新的文献求助10
7秒前
H1998完成签到,获得积分10
7秒前
7秒前
FashionBoy应助PaoPao采纳,获得10
8秒前
干净路灯完成签到,获得积分10
8秒前
天亮了完成签到,获得积分10
11秒前
科研通AI2S应助z_king_d_23采纳,获得10
11秒前
yueshan留下了新的社区评论
13秒前
感动的冬云完成签到,获得积分20
13秒前
情怀应助yangbinsci0827采纳,获得10
14秒前
14秒前
LmaPN7发布了新的文献求助20
14秒前
14秒前
俊秀的幻桃完成签到,获得积分10
15秒前
15秒前
why完成签到,获得积分10
15秒前
15秒前
安静幻枫应助Japrin采纳,获得20
17秒前
杜嘟嘟发布了新的文献求助10
18秒前
加油小李完成签到 ,获得积分10
18秒前
zhenzhen发布了新的文献求助10
19秒前
烟花应助谨慎凡桃采纳,获得10
19秒前
要强的人完成签到,获得积分10
20秒前
20秒前
送你花花完成签到,获得积分10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309103
求助须知:如何正确求助?哪些是违规求助? 2942468
关于积分的说明 8508989
捐赠科研通 2617498
什么是DOI,文献DOI怎么找? 1430174
科研通“疑难数据库(出版商)”最低求助积分说明 664072
邀请新用户注册赠送积分活动 649239