Reconfigurable Synaptic and Neuronal Functions in a V/VOx/HfWOx/Pt Memristor for Nonpolar Spiking Convolutional Neural Network

记忆电阻器 材料科学 仿真 可重构性 卷积神经网络 计算机科学 尖峰神经网络 突触重量 人工神经网络 神经形态工程学 可靠性(半导体) 神经科学 人工智能 电子工程 物理 生物 功率(物理) 经济 工程类 量子力学 电信 经济增长
作者
Yaoyao Fu,Yue Zhou,Xiaodi Huang,Boyi Dong,Fuwei Zhuge,Yi Li,Yuhui He,Yang Chai,Xiangshui Miao
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:32 (23) 被引量:50
标识
DOI:10.1002/adfm.202111996
摘要

Abstract The fully memristive neural network consisting of the threshold switching (TS) material‐based electronic neurons and resistive switching (RS) one‐based synapses shows the potential for revolutionizing the energy and area efficiency in neuromorphic computing while being confronted with challenges such as reliability and process compatibility between memristive synaptic and neuronal devices. Here, a spiking convolutional neural network (SCNN) is constructed with the forming‐and‐annealing‐free V/VO x /HfWO x /Pt memristive devices. Specifically, both highly reliable RS (endurance >10 10 , on‐off ratio >10 3 ) and TS (endurance >10 12 ) are found in the same device by setting it at RRAM or selector mode with either the HfWO x or naturally oxidized VO x layers dominating the conductance tuning. Such reconfigurability enables the emulation of both synaptic and nonpolar neuronal behaviors within the same device. A V/VO x /HfWO x /Pt‐based hardware system is thus experimentally demonstrated at much simplified process complexity and higher reliability, in which typical neural dynamics including synaptic plasticity and nonpolar neuronal spiking response are imitated. At the network level, a fully memristive SCNN incorporating nonpolar neurons is proposed for the first time. The system level simulation shows competency in pattern recognition with a dramatically reduced hardware consumption, paving the way for implementing fully memristive intelligent systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
上官若男应助云舒采纳,获得10
2秒前
Selenaxue发布了新的文献求助10
3秒前
duxh123完成签到,获得积分10
3秒前
箴逸完成签到,获得积分10
3秒前
DDy10001发布了新的文献求助10
4秒前
安静严青发布了新的文献求助10
4秒前
如梦完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
duxh123发布了新的文献求助10
6秒前
6秒前
hxx完成签到,获得积分10
6秒前
11111112222完成签到,获得积分10
7秒前
binshier完成签到,获得积分10
8秒前
9秒前
9秒前
852应助哈哈哈哈哈采纳,获得10
9秒前
10秒前
hxx发布了新的文献求助10
11秒前
蔷薇之花完成签到 ,获得积分20
13秒前
魅雪霓完成签到,获得积分10
14秒前
酷波er应助烂漫小刺猬采纳,获得30
14秒前
carly发布了新的文献求助20
15秒前
yydragen应助Maestro_S采纳,获得50
15秒前
16秒前
斯巴达发布了新的文献求助10
16秒前
乌云完成签到,获得积分10
17秒前
18秒前
20秒前
万能图书馆应助落寞凌波采纳,获得10
21秒前
xy发布了新的文献求助20
21秒前
GuangChe应助帕尼灬尼采纳,获得10
21秒前
故意的驳发布了新的文献求助10
21秒前
22秒前
moheng发布了新的文献求助10
22秒前
22秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954534
求助须知:如何正确求助?哪些是违规求助? 3500649
关于积分的说明 11100400
捐赠科研通 3231158
什么是DOI,文献DOI怎么找? 1786297
邀请新用户注册赠送积分活动 869936
科研通“疑难数据库(出版商)”最低求助积分说明 801719