组织蛋白酶G
弹性蛋白酶
蛋白酵素
蛋白酶3
中性粒细胞胞外陷阱
中性粒细胞弹性蛋白酶
髓过氧化物酶
丝氨酸
生物
组织蛋白酶L
组织蛋白酶
胰弹性蛋白酶
体外
酶
组织蛋白酶B
微生物学
细胞外
生物化学
化学
炎症
免疫学
作者
Bruno Rafael Pereira Lopes,Gabriel Soares da Silva,Gabriela de Lima Menezes,Juliana de Oliveira,Aripuanã Sakurada Aranha Watanabe,Bárbara Nery Porto,Roosevelt Alves da Silva,Karina Alves Toledo
标识
DOI:10.1016/j.intimp.2022.108573
摘要
Human respiratory syncytial virus (hRSV) is an infectious agent in infants and young children which there are no vaccines or drugs for treatment. Neutrophils are recruited for airway, where they are stimulated by hRSV to release large amounts of neutrophil extracellular traps (NETs). NETs are compound by DNA and proteins, including microbicidal enzymes. They constitute a large part of the mucus accumulated in the lung of patients, compromising their breathing capacity. In contrast, NETs can capture/inactivate hRSV, but the molecules responsible for this effect are unknown.We selected microbicidal NET enzymes (elastase, myeloperoxidase, cathepsin-G, and proteinase-3) to assess their anti-hRSV role.Through in vitro assays using HEp-2 cells, we observed that elastase, proteinase-3, and cathepsin-G, but not myeloperoxidase, showed virucidal effects even at non-cytotoxic concentrations. Elastase and proteinase-3, but not cathepsin-G, cleaved viral F-protein, which is responsible for viral adhesion and fusion with the target cells. Molecular docking analysis indicated the interaction of these macromolecules in the antigenic regions of F-protein through the active regions of the enzymes.Serine proteases from NETs interact and inactive hRSV. These results contribute to the understanding the role of NETs in hRSV infection and to designing treatment strategies for the inflammatory process during respiratory infections.
科研通智能强力驱动
Strongly Powered by AbleSci AI