Tuning the Metal Electronic Structure of Anchored Cobalt Phthalocyanine via Dual‐Regulator for Efficient CO2 Electroreduction and Zn–CO2 Batteries

过电位 材料科学 电催化剂 法拉第效率 酞菁 杂原子 催化作用 金属 电池(电) 化学工程 碳纤维 电子结构 密度泛函理论 纳米技术 电极 物理化学 电化学 有机化学 计算化学 化学 烷基 复合材料 量子力学 功率(物理) 物理 复合数 工程类 冶金
作者
Shanhe Gong,Wenbo Wang,Chaonan Zhang,Minghui Zhu,Runqing Lu,Jinjin Ye,Huan Yang,Chundu Wu,Jun Liu,Dewei Rao,Shouyan Shao,Xiaomeng Lv
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:32 (17) 被引量:100
标识
DOI:10.1002/adfm.202110649
摘要

Abstract Heterogeneous macromolecule catalysts have been known as efficient electrocatalysts for CO 2 reduction reaction, however, manipulating the activity of heterogeneous molecules via controllable metal electronic structure is still challenging. Herein, different CO 2 activated 3D, robust, nitrogen‐doped hollow carbon spheres are synthesized to anchor cobalt phthalocyanine as molecularly dispersed electrocatalysts, where the electron‐withdrawing coeffect of carbon defects and heteroatom N is responsible for tuning the electronic structure of metal center. The optimal electrocatalyst reveals high CO faradaic efficiency (FE CO ) of 95.68%, turnover frequency of 13.80 s −1 , and current density of 16.49 mA cm −2 at an overpotential of 760 mV. The control experiment and DFT calculations unveil that the significant activity is mainly ascribed to the optimal electron‐withdrawing coeffect of carbon defects and pyrrolic N, which reduce the electron density of Co center to facilitate CO 2 activated to form *COOH intermediate on Co(I) active sites during electrocatalysis. The 2 p ‐charge loss of Co is summarized as an activity descriptor, which steers the current density and production rate toward CO. Furthermore, the design strategy can universally fabricate the hybrid MPc catalyst with transitional metal (Ni, Fe) site while a rechargeable Zn–CO 2 battery is devised to deliver a maximal power density of 1.02 mW cm −2 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简简完成签到,获得积分10
1秒前
1秒前
希望天下0贩的0应助sanyue采纳,获得10
1秒前
酸酸完成签到,获得积分10
2秒前
2秒前
2秒前
进击的PhD应助紧张的惜梦采纳,获得50
2秒前
qaz发布了新的文献求助10
2秒前
2秒前
yangyajie发布了新的文献求助10
3秒前
鱿鱼完成签到,获得积分10
3秒前
852应助TANG采纳,获得10
3秒前
4秒前
4秒前
打工人发布了新的文献求助10
5秒前
6秒前
orixero应助HAHA采纳,获得10
7秒前
科研通AI6应助HAHA采纳,获得10
7秒前
科研通AI6应助HAHA采纳,获得10
7秒前
传奇3应助陈灵敏采纳,获得10
7秒前
7秒前
鱿鱼发布了新的文献求助10
7秒前
想人陪的忆彤完成签到 ,获得积分10
8秒前
8秒前
9秒前
zyy发布了新的文献求助10
9秒前
9秒前
可爱的函函应助zwl采纳,获得10
10秒前
Damon完成签到 ,获得积分10
11秒前
11秒前
hubery发布了新的文献求助10
11秒前
11秒前
leihaha发布了新的文献求助30
13秒前
FashionBoy应助义气的采文采纳,获得10
13秒前
852应助义气的采文采纳,获得10
13秒前
13秒前
无花果应助义气的采文采纳,获得10
13秒前
14秒前
科研通AI6应助义气的采文采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901