Effects of different interventions on internet addiction: A meta-analysis of random controlled trials

荟萃分析 心理干预 医学 上瘾 互联网 心理学 随机效应模型 临床心理学 内科学 精神科 计算机科学 万维网
作者
Xueqing Zhang,Jianghui Zhang,Kexin Zhang,Juan Ren,Xiaoyan Lu,Tianli Wang,Huayu Yang,Haiyun Guo,Guojing Yuan,Zhihui Zhu,Jiahu Hao,Ying Sun,Puyu Su,Linsheng Yang,Zhihua Zhang
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:313: 56-71 被引量:26
标识
DOI:10.1016/j.jad.2022.06.013
摘要

To evaluate the effects of different interventions on Internet addiction (IA), a meta-analysis and network meta-analyses were performed. We searched PubMed, Cochrane, Embase, Web of Science, PsycINFO, ProQuest, CNKI, WanFang, VIP database, and CBM from their inception to August 2021 to identify randomized controlled trials (RCTs) where the effects of interventions on IA were assessed. The risk of bias was evaluated according to the Revised Cochrane risk-of-bias tool for randomized trials (RoB2). The R studio Software and Stata 14.0 were used to perform traditional meta-analysis and network meta-analyses. A total of 59 RCTs including 3832 participants were incorporated into meta-analysis. The results of the traditional meta-analysis of 24 studies showed that CBT, group counseling, sports intervention, and Internet-based intervention could significantly reduce IA levels (SMD = −1.90, 95%CI: −2.26 to −1.55, P < 0.01, I2 = 85.9%) as compared to no-treatment control groups. Network meta-analyses based on different scales showed that combined interventions had the highest probability of being the best interventions for IA (SUCRA = 91.0 % based on IAT; SUCRA = 89.0 % based on CIAS). Most interventions have significant effects on the treatment of IA. Compared with single interventions, combined interventions showed a more pronounced improvement in Internet addiction symptoms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
体贴远山完成签到,获得积分10
1秒前
顾矜应助贤惠的正豪采纳,获得10
1秒前
1秒前
2秒前
无限的隶发布了新的文献求助10
2秒前
南木_完成签到,获得积分10
3秒前
笙歌自若完成签到,获得积分10
3秒前
3秒前
Akim应助江梦松采纳,获得10
3秒前
科研小民工应助认真的一刀采纳,获得200
4秒前
4秒前
猫樊完成签到,获得积分10
4秒前
hf完成签到,获得积分20
4秒前
灵明完成签到,获得积分10
4秒前
慕涔完成签到,获得积分10
5秒前
kingwill应助沐风采纳,获得30
5秒前
5秒前
陈龙完成签到,获得积分10
5秒前
6秒前
Ava应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
6秒前
无花果应助科研通管家采纳,获得10
6秒前
Raymond应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
7秒前
7秒前
期刊应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
Raymond应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
科研通AI5应助双勾玉采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762