A Prediction Model for Neurological Deterioration in Patients with Acute Spontaneous Intracerebral Hemorrhage

医学 逻辑回归 接收机工作特性 多元统计 急诊科 脑出血 随机森林 多元分析 急诊医学 血肿 内科学
作者
Daiquan Gao,Xiaojuan Zhang,Yunzhou Zhang,Rujiang Zhang,Yuanyuan Qiao
出处
期刊:Frontiers in Surgery [Frontiers Media]
卷期号:9
标识
DOI:10.3389/fsurg.2022.886856
摘要

Aim The aim of this study was to explore factors related to neurological deterioration (ND) after spontaneous intracerebral hemorrhage (sICH) and establish a prediction model based on random forest analysis in evaluating the risk of ND. Methods The clinical data of 411 patients with acute sICH at the Affiliated Hospital of Jining Medical University and Xuanwu Hospital of Capital Medical University between January 2018 and December 2020 were collected. After adjusting for variables, multivariate logistic regression was performed to investigate the factors related to the ND in patients with acute ICH. Then, based on the related factors in the multivariate logistic regression and four variables that have been identified as contributing to ND in the literature, we established a random forest model. The receiver operating characteristic curve was used to evaluate the prediction performance of this model. Results The result of multivariate logistic regression analysis indicated that time of onset to the emergency department (ED), baseline hematoma volume, serum sodium, and serum calcium were independently associated with the risk of ND. Simultaneously, the random forest model was developed and included eight predictors: serum calcium, time of onset to ED, serum sodium, baseline hematoma volume, systolic blood pressure change in 24 h, age, intraventricular hemorrhage expansion, and gender. The area under the curve value of the prediction model reached 0.795 in the training set and 0.713 in the testing set, which suggested the good predicting performance of the model. Conclusion Some factors related to the risk of ND were explored. Additionally, a prediction model for ND of acute sICH patients was developed based on random forest analysis, and the developed model may have a good predictive value through the internal validation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落卿然完成签到,获得积分20
1秒前
1秒前
ZYC发布了新的文献求助10
3秒前
科研那些年完成签到,获得积分10
4秒前
所所应助在途中采纳,获得10
4秒前
5秒前
肖原完成签到,获得积分10
5秒前
hhh发布了新的文献求助10
5秒前
小白完成签到 ,获得积分10
6秒前
yanzu完成签到,获得积分0
7秒前
小遇完成签到 ,获得积分10
7秒前
8秒前
icebear完成签到,获得积分10
9秒前
9秒前
mila完成签到,获得积分10
10秒前
10秒前
肌肉干细胞完成签到,获得积分10
11秒前
王含爽发布了新的文献求助10
13秒前
Hollow完成签到,获得积分10
13秒前
lanmin完成签到,获得积分10
14秒前
14秒前
Nano-Su发布了新的文献求助10
15秒前
Hello应助gg采纳,获得10
16秒前
mkmimii发布了新的文献求助10
16秒前
1234发布了新的文献求助10
18秒前
19秒前
小蘑菇应助shinn采纳,获得10
23秒前
雪山飞龙发布了新的文献求助10
23秒前
梅哈完成签到 ,获得积分10
24秒前
24秒前
zzzzz完成签到 ,获得积分10
26秒前
26秒前
27秒前
koko完成签到,获得积分10
28秒前
蓝胖子完成签到,获得积分10
30秒前
lunjianchi发布了新的文献求助10
30秒前
32秒前
闪闪的芯发布了新的文献求助10
33秒前
呆瓜完成签到,获得积分10
33秒前
高金龙完成签到 ,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164677
捐赠科研通 3247651
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498