A Prediction Model for Neurological Deterioration in Patients with Acute Spontaneous Intracerebral Hemorrhage

医学 逻辑回归 接收机工作特性 多元统计 急诊科 脑出血 随机森林 多元分析 急诊医学 血肿 内科学
作者
Daiquan Gao,Xiaojuan Zhang,Yunzhou Zhang,Rujiang Zhang,Yuanyuan Qiao
出处
期刊:Frontiers in Surgery [Frontiers Media SA]
卷期号:9
标识
DOI:10.3389/fsurg.2022.886856
摘要

Aim The aim of this study was to explore factors related to neurological deterioration (ND) after spontaneous intracerebral hemorrhage (sICH) and establish a prediction model based on random forest analysis in evaluating the risk of ND. Methods The clinical data of 411 patients with acute sICH at the Affiliated Hospital of Jining Medical University and Xuanwu Hospital of Capital Medical University between January 2018 and December 2020 were collected. After adjusting for variables, multivariate logistic regression was performed to investigate the factors related to the ND in patients with acute ICH. Then, based on the related factors in the multivariate logistic regression and four variables that have been identified as contributing to ND in the literature, we established a random forest model. The receiver operating characteristic curve was used to evaluate the prediction performance of this model. Results The result of multivariate logistic regression analysis indicated that time of onset to the emergency department (ED), baseline hematoma volume, serum sodium, and serum calcium were independently associated with the risk of ND. Simultaneously, the random forest model was developed and included eight predictors: serum calcium, time of onset to ED, serum sodium, baseline hematoma volume, systolic blood pressure change in 24 h, age, intraventricular hemorrhage expansion, and gender. The area under the curve value of the prediction model reached 0.795 in the training set and 0.713 in the testing set, which suggested the good predicting performance of the model. Conclusion Some factors related to the risk of ND were explored. Additionally, a prediction model for ND of acute sICH patients was developed based on random forest analysis, and the developed model may have a good predictive value through the internal validation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大气靳发布了新的文献求助10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
WsomF发布了新的文献求助30
2秒前
2秒前
Nan关闭了Nan文献求助
3秒前
这是昵称完成签到,获得积分10
3秒前
橘23478562发布了新的文献求助10
4秒前
第八号当铺完成签到,获得积分10
4秒前
4秒前
打打应助谷粱紫槐采纳,获得10
5秒前
6秒前
小顾完成签到 ,获得积分10
7秒前
8秒前
yahonyoyoyo发布了新的文献求助10
9秒前
10秒前
fafafa发布了新的文献求助10
10秒前
10秒前
未来的心理学家完成签到 ,获得积分10
11秒前
穆清发布了新的文献求助50
12秒前
炎星语发布了新的文献求助10
12秒前
爱撒娇的砖头完成签到,获得积分10
13秒前
13秒前
Fannie完成签到,获得积分10
13秒前
纪言七许完成签到 ,获得积分10
14秒前
huang发布了新的文献求助10
14秒前
FashionBoy应助hanxi采纳,获得10
14秒前
漾漾完成签到,获得积分10
15秒前
科研通AI6.1应助yahonyoyoyo采纳,获得10
15秒前
Lucas应助洁净的士晋采纳,获得10
15秒前
大个应助学术蛀虫采纳,获得20
16秒前
16秒前
骆驼林子完成签到 ,获得积分10
16秒前
科研通AI6.1应助淡然从雪采纳,获得10
16秒前
Hhong发布了新的文献求助10
17秒前
17秒前
yao学渣完成签到 ,获得积分10
18秒前
18秒前
Alan完成签到,获得积分10
19秒前
王大帅哥完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734318
求助须知:如何正确求助?哪些是违规求助? 5353475
关于积分的说明 15326692
捐赠科研通 4879069
什么是DOI,文献DOI怎么找? 2621634
邀请新用户注册赠送积分活动 1570768
关于科研通互助平台的介绍 1527666