A Prediction Model for Neurological Deterioration in Patients with Acute Spontaneous Intracerebral Hemorrhage

医学 逻辑回归 接收机工作特性 多元统计 急诊科 脑出血 随机森林 多元分析 急诊医学 血肿 内科学
作者
Daiquan Gao,Xiaojuan Zhang,Yunzhou Zhang,Rujiang Zhang,Yuanyuan Qiao
出处
期刊:Frontiers in Surgery [Frontiers Media SA]
卷期号:9
标识
DOI:10.3389/fsurg.2022.886856
摘要

Aim The aim of this study was to explore factors related to neurological deterioration (ND) after spontaneous intracerebral hemorrhage (sICH) and establish a prediction model based on random forest analysis in evaluating the risk of ND. Methods The clinical data of 411 patients with acute sICH at the Affiliated Hospital of Jining Medical University and Xuanwu Hospital of Capital Medical University between January 2018 and December 2020 were collected. After adjusting for variables, multivariate logistic regression was performed to investigate the factors related to the ND in patients with acute ICH. Then, based on the related factors in the multivariate logistic regression and four variables that have been identified as contributing to ND in the literature, we established a random forest model. The receiver operating characteristic curve was used to evaluate the prediction performance of this model. Results The result of multivariate logistic regression analysis indicated that time of onset to the emergency department (ED), baseline hematoma volume, serum sodium, and serum calcium were independently associated with the risk of ND. Simultaneously, the random forest model was developed and included eight predictors: serum calcium, time of onset to ED, serum sodium, baseline hematoma volume, systolic blood pressure change in 24 h, age, intraventricular hemorrhage expansion, and gender. The area under the curve value of the prediction model reached 0.795 in the training set and 0.713 in the testing set, which suggested the good predicting performance of the model. Conclusion Some factors related to the risk of ND were explored. Additionally, a prediction model for ND of acute sICH patients was developed based on random forest analysis, and the developed model may have a good predictive value through the internal validation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
美乐蒂发布了新的文献求助10
1秒前
呐呐应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
子车茗应助科研通管家采纳,获得40
1秒前
Owen应助科研通管家采纳,获得10
1秒前
1秒前
科目三应助科研通管家采纳,获得10
1秒前
VDC应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得30
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
2秒前
Tom左完成签到,获得积分10
2秒前
maizien完成签到,获得积分10
3秒前
堃堃堃发布了新的文献求助10
3秒前
李爱国应助仁爱发卡采纳,获得10
3秒前
Orange应助呀呀呀一采纳,获得10
4秒前
4秒前
大个应助zyy6657采纳,获得10
4秒前
5秒前
6秒前
Akim应助云_123采纳,获得10
6秒前
桐桐应助经百招采纳,获得10
7秒前
10秒前
航航完成签到,获得积分10
10秒前
myx发布了新的文献求助10
11秒前
11秒前
xhtw发布了新的文献求助10
11秒前
11秒前
12秒前
研友_VZG7GZ应助zai采纳,获得10
12秒前
lyy完成签到 ,获得积分10
12秒前
13秒前
糟糕的雪糕完成签到,获得积分10
14秒前
15秒前
小周发布了新的文献求助10
15秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Keywords: explanatory textual sequences, motivation, self-determination, academic performance, math, artificial intelligence 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267288
求助须知:如何正确求助?哪些是违规求助? 2906812
关于积分的说明 8339691
捐赠科研通 2577377
什么是DOI,文献DOI怎么找? 1400921
科研通“疑难数据库(出版商)”最低求助积分说明 654973
邀请新用户注册赠送积分活动 633892