Artificial Intelligence Tool for Assessment of Indeterminate Pulmonary Nodules Detected with CT

医学 恶性肿瘤 放射科 接收机工作特性 肺科医生 不确定 计算机辅助设计 回顾性队列研究 核医学 内科学 重症监护医学 数学 工程制图 纯数学 工程类
作者
Roger Y Kim,Jason Oke,Lyndsey C. Pickup,Reginald F. Munden,Travis Dotson,Christina Bellinger,Avi J. Cohen,Michael Simoff,Pierre P. Massion,Claire Filippini,Fergus Gleeson,Anil Vachani
出处
期刊:Radiology [Radiological Society of North America]
卷期号:304 (3): 683-691 被引量:24
标识
DOI:10.1148/radiol.212182
摘要

Background Limited data are available regarding whether computer-aided diagnosis (CAD) improves assessment of malignancy risk in indeterminate pulmonary nodules (IPNs). Purpose To evaluate the effect of an artificial intelligence-based CAD tool on clinician IPN diagnostic performance and agreement for both malignancy risk categories and management recommendations. Materials and Methods This was a retrospective multireader multicase study performed in June and July 2020 on chest CT studies of IPNs. Readers used only CT imaging data and provided an estimate of malignancy risk and a management recommendation for each case without and with CAD. The effect of CAD on average reader diagnostic performance was assessed using the Obuchowski-Rockette and Dorfman-Berbaum-Metz method to calculate estimates of area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Multirater Fleiss κ statistics were used to measure interobserver agreement for malignancy risk and management recommendations. Results A total of 300 chest CT scans of IPNs with maximal diameters of 5-30 mm (50.0% malignant) were reviewed by 12 readers (six radiologists, six pulmonologists) (patient median age, 65 years; IQR, 59-71 years; 164 [55%] men). Readers' average AUC improved from 0.82 to 0.89 with CAD (P < .001). At malignancy risk thresholds of 5% and 65%, use of CAD improved average sensitivity from 94.1% to 97.9% (P = .01) and from 52.6% to 63.1% (P < .001), respectively. Average reader specificity improved from 37.4% to 42.3% (P = .03) and from 87.3% to 89.9% (P = .05), respectively. Reader interobserver agreement improved with CAD for both the less than 5% (Fleiss κ, 0.50 vs 0.71; P < .001) and more than 65% (Fleiss κ, 0.54 vs 0.71; P < .001) malignancy risk categories. Overall reader interobserver agreement for management recommendation categories (no action, CT surveillance, diagnostic procedure) also improved with CAD (Fleiss κ, 0.44 vs 0.52; P = .001). Conclusion Use of computer-aided diagnosis improved estimation of indeterminate pulmonary nodule malignancy risk on chest CT scans and improved interobserver agreement for both risk stratification and management recommendations. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Yanagawa in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助赖道之采纳,获得10
刚刚
1秒前
苏卿应助Eric采纳,获得10
1秒前
思源应助hhzz采纳,获得10
2秒前
红红完成签到,获得积分10
5秒前
瑶一瑶发布了新的文献求助10
5秒前
NexusExplorer应助刘鹏宇采纳,获得10
5秒前
roselau完成签到,获得积分10
5秒前
yudandan@CJLU完成签到,获得积分10
6秒前
6秒前
半山完成签到,获得积分10
10秒前
吹泡泡的红豆完成签到 ,获得积分10
11秒前
研友_89eBO8完成签到 ,获得积分10
11秒前
隐形曼青应助ZeJ采纳,获得10
11秒前
11秒前
隐形曼青应助温暖的钻石采纳,获得10
12秒前
Khr1stINK发布了新的文献求助10
13秒前
123cxj发布了新的文献求助10
14秒前
星辰大海应助红红采纳,获得10
14秒前
sweetbearm应助小周采纳,获得10
15秒前
科研通AI5应助赖道之采纳,获得10
15秒前
16秒前
HonamC完成签到,获得积分10
17秒前
十三十四十五完成签到,获得积分10
18秒前
潇洒的问夏完成签到 ,获得积分10
20秒前
无声瀑布完成签到,获得积分10
20秒前
Bingtao_Lian完成签到 ,获得积分10
21秒前
小布丁完成签到 ,获得积分10
21秒前
竹筏过海应助季生采纳,获得30
22秒前
23秒前
buno应助22采纳,获得10
24秒前
赘婿应助TT采纳,获得10
25秒前
25秒前
25秒前
26秒前
Jenny应助赖道之采纳,获得10
28秒前
依古比古完成签到 ,获得积分10
30秒前
汎影发布了新的文献求助10
30秒前
小二完成签到,获得积分10
30秒前
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808