光催化
材料科学
选择性
吸附
可见光谱
氮化碳
载流子
纳米颗粒
纳米技术
化学工程
带隙
合理设计
石墨氮化碳
聚合
光电子学
催化作用
化学
聚合物
有机化学
复合材料
工程类
作者
Sudong Yang,Hongyi Li,Hongmei Li,Huiming Li,Wensheng Qi,Qian Zhang,Jie Zhu,Peng Zhao,Lin Chen
标识
DOI:10.1016/j.apcatb.2022.121612
摘要
g-C3N4 is an appealing non-metal photocatalyst for CO2 reduction, while it shows unsatisfactory performance due to poor CO2 adsorption ability and deficient collection of photo-excited charges, but its efficiency greatly relies on the effective bulk and surface separation of photoexcited charge carriers. To address the challenges, we elaborately design Ag nanoparticles decorated 3D ordered g-C3N4 assemblies based on a synergistic route of Ag-induced supramolecular tailoring and assembling followed by thermal polymerization. The 3D structural topology of the nano-units for g-C3N4 can be altered from 2D orderly stacked nanosheets to 1D twisty g-C3N4 nanotubes by varying the amount of Ag(I). Moreover, the band structures and nitrogen vacancies can also be well-regulated. As supported by experimental and DFT calculation results, ACNNT-2 demonstrates excellent CO2 adsorption capacity, superior light harvesting ability, efficient charge separation and more localized charge density distribution, which can effectively decrease the energy barrier for COOH* intermediate and boost the CO* desorption, resulting in a superior photocatalytic selectivity. Consequently, in sharp contrast to BCN, the ACNNT-2 manifests a markedly improved CO generation rate of 145.5 μmol g−1h−1 under visible-light irradiation, reflecting an 18-fold enhancement together with a CO selectivity of 89%. This strategy provides a profound insight into the multiscale modulation of g-C3N4 photocatalysts with enhanced efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI