Contrast-enhanced ultrasound–based nomogram for predicting malignant involvements among sonographically indeterminate/suspicious cervical lymph nodes in patients with differentiated thyroid carcinoma

列线图 医学 放射科 接收机工作特性 淋巴结 超声波 置信区间 甲状腺癌 超声造影 甲状腺球蛋白 单变量分析 转移 甲状腺 多元分析 癌症 肿瘤科 内科学
作者
Qianqian Guo,Chao Sun,Qing Chang,Yong Wang,Yu Chen,Qian Wang,Zhengjiang Li,Lijuan Niu
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
卷期号:48 (8): 1579-1589 被引量:8
标识
DOI:10.1016/j.ultrasmedbio.2022.04.004
摘要

This prospective study was aimed at assessing the value of nomograms based on conventional and contrast-enhanced ultrasound (CEUS) features in the pre-operative diagnosis of sonographically indeterminate/suspicious lymph node metastasis (LNM) in patients with differentiated thyroid carcinoma (DTC). A total of 72 cervical LNs from 47 patients with DTC from January to June 2018 were included in the primary data set, and 30 LNs from 15 patients with DTC from July to August 2018 were included in the external validation data set. The LNs of the included patients were preoperatively evaluated by conventional ultrasound (US) and CEUS. Each included LN was labeled by puncture localization with carbon nanoparticle suspension injection (Canalin) under US guidance and dissected separately to ensure the one-to-one correspondence between ultrasonic features and pathology status. Univariate logistic regression analysis was used to identify risk factors for LNM. A nomogram was used to construct a prediction model for cervical metastatic LNs. Round shape, absence of hilar structure, peripheral or mixed blood flow and centripetal or mass enhancement were risk factors for lymph node metastases. The area under the receiver operating characteristic curve of the nomogram model based on conventional US and CEUS features was 0.93 (95% confidence interval: 0.872-0.985), which was superior to that of the nomogram based on conventional US features(0.85, 95% confidence interval: 0.707-0.989). CEUS features can provide incremental benefit in the diagnosis of LNM among DTC cohorts. Nomograms based on conventional US and CEUS features can predict LN status with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LMNjkn发布了新的文献求助10
刚刚
xiao发布了新的文献求助10
刚刚
ww发布了新的文献求助10
刚刚
1秒前
Olsters发布了新的文献求助10
1秒前
深情安青应助该睡觉啦采纳,获得10
1秒前
1秒前
SEV完成签到,获得积分20
1秒前
愉快迎荷完成签到,获得积分10
2秒前
矮小的聪展完成签到,获得积分10
3秒前
factor完成签到,获得积分10
3秒前
Hello应助李来仪采纳,获得10
4秒前
SEV发布了新的文献求助10
4秒前
4秒前
4秒前
坚强亦丝应助隐形机器猫采纳,获得10
5秒前
小马甲应助SCI采纳,获得10
6秒前
老疯智发布了新的文献求助10
6秒前
sweetbearm应助通~采纳,获得10
6秒前
神凰完成签到,获得积分10
6秒前
Z小姐发布了新的文献求助10
7秒前
NexusExplorer应助白泽采纳,获得10
7秒前
8秒前
8秒前
火星上妙梦完成签到 ,获得积分10
8秒前
赘婿应助mayungui采纳,获得10
8秒前
贾不可发布了新的文献求助10
9秒前
英俊梦槐发布了新的文献求助30
9秒前
Xu完成签到,获得积分10
10秒前
10秒前
秀丽千山完成签到,获得积分10
10秒前
11秒前
12秒前
哈哈哈哈完成签到,获得积分10
12秒前
沧海泪发布了新的文献求助10
13秒前
小胡先森应助凤凰山采纳,获得10
13秒前
一一完成签到,获得积分10
13秒前
惠惠发布了新的文献求助10
13秒前
shotgod完成签到,获得积分20
14秒前
科研通AI5应助蕾子采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794