An Explainable Spatial–Frequency Multiscale Transformer for Remote Sensing Scene Classification

计算机科学 编码器 卷积神经网络 人工智能 特征学习 频域 遥感 模式识别(心理学) 变压器 特征提取 深度学习 特征(语言学) 空间频率 计算机视觉 工程类 地理 语言学 哲学 物理 光学 电压 电气工程 操作系统
作者
Yuting Yang,Licheng Jiao,Fang Liu,Xu Liu,Lingling Li,Puhua Chen,Shuyuan Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:21
标识
DOI:10.1109/tgrs.2023.3265361
摘要

Deep convolutional neural networks (CNNs) are significant in remote sensing. Due to the strong local representation learning ability, CNNs have excellent performance in remote sensing scene classification. However, CNNs focus on location-sensitive representations in the spatial domain and lack contextual information mining capabilities. Meanwhile, remote sensing scene classification still faces challenges, such as complex scenes and significant differences in target sizes. To address the problems and challenges above, more robust feature representation learning networks are necessary. In this paper, a novel and explainable spatial-frequency multi-scale Transformer framework, SF-MSFormer, is proposed for remote sensing scene classification. It mainly comprises spatial-domain and frequency-domain multi-scale Transformer branches, which consider the spatial-frequency global multi-scale representation features. Besides, the texture-enhanced encoder is designed in the frequency-domain multi-scale Transformer branch, which is adaptive to capture the global texture features. In addition, an adaptive feature aggregation module is designed to integrate the spatial-frequency multi-scale feature for final recognition. The experimental results verify the effectiveness of SF-MSFormer and show better convergence. It achieves state-of-the-art results (98.72%, 98.6%, 99.72%, and 94.83% overall accuracies, respectively) on the AID, UCM, WHU-RS19, and NWPU-RESISC45 datasets. Besides, the feature visualizations evaluate the explainability of the texture-enhanced encoder. The code implementation of this article will be available at https://github.com/yutinyang/SF-MSFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助黎金鑫采纳,获得10
2秒前
3秒前
迷路以筠完成签到,获得积分10
4秒前
4秒前
4秒前
柒月完成签到,获得积分10
5秒前
忆楠完成签到,获得积分20
5秒前
5秒前
大傻春完成签到 ,获得积分10
6秒前
MRCHONG发布了新的文献求助10
6秒前
墨翎完成签到,获得积分20
7秒前
程程程程完成签到,获得积分10
8秒前
忆楠发布了新的文献求助10
8秒前
可爱的函函应助柒月采纳,获得10
9秒前
NexusExplorer应助钟是一梦采纳,获得10
9秒前
zhangscience发布了新的文献求助10
11秒前
YYJ25发布了新的文献求助10
11秒前
科研通AI5应助liyanglin采纳,获得10
11秒前
11秒前
12秒前
shuangcheng完成签到,获得积分20
13秒前
可爱的函函应助周周采纳,获得10
14秒前
我是125应助昵称采纳,获得10
14秒前
15秒前
小赵发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
情怀应助zhangscience采纳,获得10
17秒前
Doctor_Mill完成签到,获得积分10
18秒前
18秒前
思源应助学习猴采纳,获得10
18秒前
Lavendar完成签到,获得积分10
18秒前
19秒前
19秒前
21秒前
钟是一梦发布了新的文献求助10
23秒前
23秒前
YYJ25发布了新的文献求助10
23秒前
满意冷荷完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849