Exploring the relationship and influencing factors of cultivated land multifunction in China from the perspective of trade-off/synergy

中国 粮食安全 解释力 二元分析 功能(生物学) 透视图(图形) 经济地理学 驱动因素 经济 生态学 业务 自然资源经济学 地理 农业 计算机科学 数学 统计 生物 认识论 哲学 人工智能 考古 进化生物学
作者
Yu Liu,Chunyan Wan,Guoliang Xu,Liting Chen,Can Yang
出处
期刊:Ecological Indicators [Elsevier]
卷期号:149: 110171-110171 被引量:31
标识
DOI:10.1016/j.ecolind.2023.110171
摘要

In China, the fast growth of the economy and society is causing a change in the multifunction of cultivated land (MCL), but there is still a lack of proper understanding of the structural connections between these internal functions. Based on exploring the theoretical concept of MCL and quantitative measurement, this paper applied the trade-off/synergy model and the bivariate spatial autocorrelation model to investigate the relationships between the various dimensions of MCL, and the influential factors was revealed by Geographical Detectors. Our research demonstrated that the function of China's cultivated land has obviously changed from a single grain production to a complex including social security, ecological and cultural functions during 2010–2020. Through quantitative measurement of MCL, the results show that, on the one hand, the total amount of MCL increases significantly over time; on the other hand, MCL shows a typical spatial differentiation characteristic of "high in the southern and low in the northern". According to the analysis of trade-off/synergy, overall, the MCL presents a positive synergy situation, and this situation has been enhanced over time. As to the influencing factors, the socio-economic development, especially the rural development, significantly affected the trade-off/synergy. Moreover, multi-factor interaction considerably improves the explanatory power of the trade-off/synergy relationship for MCL. These results provide evidence for establishing a more efficient use of cultivated land and can also provide food security management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助旺仔采纳,获得10
1秒前
3秒前
Jessie完成签到 ,获得积分10
3秒前
fx发布了新的文献求助10
3秒前
热心幻天发布了新的文献求助10
3秒前
6秒前
6秒前
8秒前
小王完成签到,获得积分10
8秒前
9秒前
11秒前
鲸鱼完成签到,获得积分10
11秒前
11秒前
11秒前
princess发布了新的文献求助10
12秒前
魂断红颜发布了新的文献求助10
12秒前
12秒前
hydrogen完成签到,获得积分10
13秒前
天天快乐应助彩虹猫采纳,获得10
14秒前
科目三应助西扬采纳,获得10
14秒前
Yankexin完成签到,获得积分20
15秒前
虚心的夏青完成签到,获得积分10
15秒前
zxm1997完成签到,获得积分20
15秒前
knn完成签到,获得积分10
15秒前
LMBE1K完成签到 ,获得积分10
15秒前
ini完成签到,获得积分10
15秒前
15秒前
ASDS完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
顾矜应助热心幻天采纳,获得10
16秒前
庄生发布了新的文献求助10
17秒前
无极微光应助铁风筝芳芳采纳,获得20
17秒前
梅岱衍径发布了新的文献求助10
17秒前
18秒前
18秒前
美丽的寻梅完成签到,获得积分10
18秒前
18秒前
zxm1997发布了新的文献求助10
18秒前
zhu发布了新的文献求助10
20秒前
pluto应助庄生采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613276
求助须知:如何正确求助?哪些是违规求助? 4698456
关于积分的说明 14897966
捐赠科研通 4735724
什么是DOI,文献DOI怎么找? 2546946
邀请新用户注册赠送积分活动 1510961
关于科研通互助平台的介绍 1473537