Few-shot Molecular Property Prediction via Hierarchically Structured Learning on Relation Graphs

化学信息学 计算机科学 杠杆(统计) 人工智能 关系(数据库) 理论计算机科学 机器学习 财产(哲学) 知识图 数据挖掘 哲学 认识论 化学 计算化学
作者
Wei Ju,Zequn Liu,Yifang Qin,Bin Feng,Chen Wang,Zhihui Guo,Xiao Luo,Ming Zhang
出处
期刊:Neural Networks [Elsevier]
卷期号:163: 122-131 被引量:37
标识
DOI:10.1016/j.neunet.2023.03.034
摘要

This paper studies few-shot molecular property prediction, which is a fundamental problem in cheminformatics and drug discovery. More recently, graph neural network based model has gradually become the theme of molecular property prediction. However, there is a natural deficiency for existing methods, that is, the scarcity of molecules with desired properties, which makes it hard to build an effective predictive model. In this paper, we propose a novel framework called Hierarchically Structured Learning on Relation Graphs (HSL-RG) for molecular property prediction, which explores the structural semantics of a molecule from both global-level and local-level granularities. Technically, we first leverage graph kernels to construct relation graphs to globally communicate molecular structural knowledge from neighboring molecules and then design self-supervised learning signals of structure optimization to locally learn transformation-invariant representations from molecules themselves. Moreover, we propose a task-adaptive meta-learning algorithm to provide meta knowledge customization for different tasks in few-shot scenarios. Experiments on multiple real-life benchmark datasets show that HSL-RG is superior to existing state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sc完成签到,获得积分10
刚刚
顾矜应助搔扒采纳,获得10
刚刚
3093284979完成签到,获得积分10
刚刚
完美世界应助H星科23456采纳,获得10
刚刚
1秒前
1秒前
SciGPT应助gaochanglu采纳,获得10
3秒前
3秒前
3秒前
4秒前
kljlk发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
小铭同学关注了科研通微信公众号
5秒前
谢瑞恒完成签到,获得积分10
5秒前
5秒前
淇奥完成签到 ,获得积分10
5秒前
天天快乐应助Fuao采纳,获得10
5秒前
dz618完成签到,获得积分10
6秒前
6秒前
6秒前
852应助葡萄冻冻采纳,获得10
6秒前
Ww发布了新的文献求助10
7秒前
小李呀发布了新的文献求助10
7秒前
8秒前
wangqinlei发布了新的文献求助10
8秒前
8秒前
9秒前
欢呼的冷亦完成签到,获得积分10
9秒前
9秒前
不明生物发布了新的文献求助10
9秒前
dxxcshin完成签到,获得积分10
10秒前
852应助清腾采纳,获得10
10秒前
10秒前
优雅的砖头完成签到,获得积分10
10秒前
花开应助kljlk采纳,获得10
10秒前
10秒前
栗子发布了新的文献求助10
11秒前
11秒前
不安的大米完成签到,获得积分10
11秒前
wangqinlei完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721