Citrus Disease Image Generation and Classification Based on Improved FastGAN and EfficientNet-B5

鉴别器 生成对抗网络 试验装置 计算机科学 人工智能 核(代数) 模式识别(心理学) 数学 深度学习 电信 组合数学 探测器
作者
Qiufang Dai,Yuanhang Guo,Zhen Li,Shuran Song,Shilei Lyu,Daozong Sun,Yuan Wang,Ziwei Chen
出处
期刊:Agronomy [MDPI AG]
卷期号:13 (4): 988-988 被引量:7
标识
DOI:10.3390/agronomy13040988
摘要

The rapid and accurate identification of citrus leaf diseases is crucial for the sustainable development of the citrus industry. Because citrus leaf disease samples are small, unevenly distributed, and difficult to collect, we redesigned the generator structure of FastGAN and added small batch standard deviations to the discriminator to produce an enhanced model called FastGAN2, which was used for generating citrus disease and nutritional deficiency (zinc and magnesium deficiency) images. The performance of the existing model degrades significantly when the training and test data exhibit large differences in appearance or originate from different regions. To solve this problem, we propose an EfficientNet-B5 network incorporating adaptive angular margin (Arcface) loss with the adversarial weight perturbation mechanism, and we call it EfficientNet-B5-pro. The FastGAN2 network can be trained using only 50 images. The Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) are improved by 31.8% and 59.86%, respectively, compared to the original FastGAN network; 8000 images were generated using the FastGAN2 network (2000 black star disease, 2000 canker disease, 2000 healthy, 2000 deficiency). Only images generated by the FastGAN2 network were used as the training set to train the ten classification networks. Real images, which were not used to train the FastGAN2 network, were used as the test set. The average accuracy rates of the ten classification networks exceeded 93%. The accuracy, precision, recall, and F1 scores achieved by EfficientNet-B5-pro were 97.04%, 97.32%, 96.96%, and 97.09%, respectively, and they were 2.26%, 1.19%, 1.98%, and 1.86% higher than those of EfficientNet-B5, respectively. The classification network model can be successfully trained using only the images generated by FastGAN2, and EfficientNet-B5-pro has good generalization and robustness. The method used in this study can be an effective tool for citrus disease and nutritional deficiency image classification using a small number of samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英吉利25发布了新的文献求助10
刚刚
共享精神应助Wu采纳,获得10
刚刚
半钱半夏完成签到,获得积分10
1秒前
深情安青应助小丫采纳,获得10
1秒前
1秒前
WZ发布了新的文献求助10
1秒前
双休发布了新的文献求助10
2秒前
lion完成签到,获得积分10
2秒前
戴维少尉发布了新的文献求助10
2秒前
Lucas应助蚂蚁一号采纳,获得10
2秒前
2秒前
天天快乐应助橙橙采纳,获得10
2秒前
上蹿下跳的猹完成签到,获得积分10
3秒前
天下迎春发布了新的文献求助10
3秒前
3秒前
万能图书馆应助满意沛槐采纳,获得10
3秒前
东方三问发布了新的文献求助10
3秒前
LaoLuo给LaoLuo的求助进行了留言
4秒前
nong12123完成签到,获得积分10
4秒前
青阳发布了新的文献求助10
4秒前
科研通AI6应助健忘的翠柏采纳,获得30
4秒前
跳跃的愫发布了新的文献求助10
4秒前
桶治世界完成签到,获得积分10
4秒前
Miss67发布了新的文献求助10
5秒前
充电宝应助momo采纳,获得10
5秒前
5秒前
科研通AI6应助火星上的莹采纳,获得10
5秒前
缘然完成签到,获得积分10
6秒前
我爱读文献完成签到,获得积分10
6秒前
FU完成签到,获得积分10
6秒前
弄香完成签到,获得积分10
7秒前
凌L发布了新的文献求助10
7秒前
欣新完成签到,获得积分10
7秒前
花花完成签到,获得积分10
7秒前
wei发布了新的文献求助10
7秒前
7秒前
jonsan发布了新的文献求助10
7秒前
高大厉发布了新的文献求助30
8秒前
南风完成签到,获得积分10
8秒前
桶治世界发布了新的文献求助10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340428
求助须知:如何正确求助?哪些是违规求助? 4476928
关于积分的说明 13933312
捐赠科研通 4372740
什么是DOI,文献DOI怎么找? 2402526
邀请新用户注册赠送积分活动 1395409
关于科研通互助平台的介绍 1367489