已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Citrus Disease Image Generation and Classification Based on Improved FastGAN and EfficientNet-B5

鉴别器 生成对抗网络 试验装置 计算机科学 人工智能 核(代数) 模式识别(心理学) 数学 深度学习 电信 组合数学 探测器
作者
Qiufang Dai,Yuanhang Guo,Zhen Li,Shuran Song,Shilei Lyu,Daozong Sun,Yuan Wang,Ziwei Chen
出处
期刊:Agronomy [MDPI AG]
卷期号:13 (4): 988-988 被引量:7
标识
DOI:10.3390/agronomy13040988
摘要

The rapid and accurate identification of citrus leaf diseases is crucial for the sustainable development of the citrus industry. Because citrus leaf disease samples are small, unevenly distributed, and difficult to collect, we redesigned the generator structure of FastGAN and added small batch standard deviations to the discriminator to produce an enhanced model called FastGAN2, which was used for generating citrus disease and nutritional deficiency (zinc and magnesium deficiency) images. The performance of the existing model degrades significantly when the training and test data exhibit large differences in appearance or originate from different regions. To solve this problem, we propose an EfficientNet-B5 network incorporating adaptive angular margin (Arcface) loss with the adversarial weight perturbation mechanism, and we call it EfficientNet-B5-pro. The FastGAN2 network can be trained using only 50 images. The Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) are improved by 31.8% and 59.86%, respectively, compared to the original FastGAN network; 8000 images were generated using the FastGAN2 network (2000 black star disease, 2000 canker disease, 2000 healthy, 2000 deficiency). Only images generated by the FastGAN2 network were used as the training set to train the ten classification networks. Real images, which were not used to train the FastGAN2 network, were used as the test set. The average accuracy rates of the ten classification networks exceeded 93%. The accuracy, precision, recall, and F1 scores achieved by EfficientNet-B5-pro were 97.04%, 97.32%, 96.96%, and 97.09%, respectively, and they were 2.26%, 1.19%, 1.98%, and 1.86% higher than those of EfficientNet-B5, respectively. The classification network model can be successfully trained using only the images generated by FastGAN2, and EfficientNet-B5-pro has good generalization and robustness. The method used in this study can be an effective tool for citrus disease and nutritional deficiency image classification using a small number of samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陌陌完成签到,获得积分20
刚刚
香蕉觅云应助polystyrene采纳,获得10
4秒前
Isaac完成签到 ,获得积分10
4秒前
YL发布了新的文献求助10
5秒前
6秒前
sep完成签到 ,获得积分10
7秒前
8秒前
小羊咩完成签到 ,获得积分0
8秒前
9秒前
11秒前
LaffiteElla发布了新的文献求助20
11秒前
11秒前
呼啦啦啦应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
呼啦啦啦应助科研通管家采纳,获得10
13秒前
呼啦啦啦应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得30
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
甜美坤完成签到 ,获得积分10
13秒前
呼啦啦啦应助科研通管家采纳,获得10
13秒前
无极微光应助科研通管家采纳,获得20
13秒前
黄大小姐完成签到,获得积分10
14秒前
开放素完成签到 ,获得积分0
15秒前
苏家豪完成签到,获得积分20
15秒前
赵赵完成签到 ,获得积分10
15秒前
罗皮特完成签到 ,获得积分10
16秒前
Anlocia完成签到 ,获得积分10
16秒前
不安诗云发布了新的文献求助10
18秒前
大头发布了新的文献求助10
18秒前
20秒前
pollen06完成签到,获得积分10
22秒前
含蓄又亦完成签到,获得积分10
23秒前
xinasoooo完成签到 ,获得积分10
24秒前
哈哈哈完成签到,获得积分10
24秒前
小青加油发布了新的文献求助10
24秒前
大头完成签到,获得积分10
24秒前
多亿点完成签到 ,获得积分10
25秒前
Parsec完成签到 ,获得积分10
25秒前
轨迹应助冷静新烟采纳,获得20
26秒前
梵凡完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754409
求助须知:如何正确求助?哪些是违规求助? 5486788
关于积分的说明 15380103
捐赠科研通 4893032
什么是DOI,文献DOI怎么找? 2631695
邀请新用户注册赠送积分活动 1579638
关于科研通互助平台的介绍 1535372