Citrus Disease Image Generation and Classification Based on Improved FastGAN and EfficientNet-B5

鉴别器 生成对抗网络 试验装置 计算机科学 人工智能 核(代数) 模式识别(心理学) 数学 深度学习 电信 组合数学 探测器
作者
Qiufang Dai,Yuanhang Guo,Zhen Li,Shuran Song,Shilei Lyu,Daozong Sun,Yuan Wang,Ziwei Chen
出处
期刊:Agronomy [Multidisciplinary Digital Publishing Institute]
卷期号:13 (4): 988-988 被引量:7
标识
DOI:10.3390/agronomy13040988
摘要

The rapid and accurate identification of citrus leaf diseases is crucial for the sustainable development of the citrus industry. Because citrus leaf disease samples are small, unevenly distributed, and difficult to collect, we redesigned the generator structure of FastGAN and added small batch standard deviations to the discriminator to produce an enhanced model called FastGAN2, which was used for generating citrus disease and nutritional deficiency (zinc and magnesium deficiency) images. The performance of the existing model degrades significantly when the training and test data exhibit large differences in appearance or originate from different regions. To solve this problem, we propose an EfficientNet-B5 network incorporating adaptive angular margin (Arcface) loss with the adversarial weight perturbation mechanism, and we call it EfficientNet-B5-pro. The FastGAN2 network can be trained using only 50 images. The Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) are improved by 31.8% and 59.86%, respectively, compared to the original FastGAN network; 8000 images were generated using the FastGAN2 network (2000 black star disease, 2000 canker disease, 2000 healthy, 2000 deficiency). Only images generated by the FastGAN2 network were used as the training set to train the ten classification networks. Real images, which were not used to train the FastGAN2 network, were used as the test set. The average accuracy rates of the ten classification networks exceeded 93%. The accuracy, precision, recall, and F1 scores achieved by EfficientNet-B5-pro were 97.04%, 97.32%, 96.96%, and 97.09%, respectively, and they were 2.26%, 1.19%, 1.98%, and 1.86% higher than those of EfficientNet-B5, respectively. The classification network model can be successfully trained using only the images generated by FastGAN2, and EfficientNet-B5-pro has good generalization and robustness. The method used in this study can be an effective tool for citrus disease and nutritional deficiency image classification using a small number of samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助winnerbing采纳,获得10
刚刚
WYP完成签到,获得积分10
1秒前
Ashley发布了新的文献求助10
1秒前
望北楼主发布了新的文献求助10
1秒前
Hana完成签到,获得积分10
2秒前
HCKACECE完成签到,获得积分10
2秒前
xin发布了新的文献求助10
2秒前
所所应助ddd采纳,获得10
2秒前
桐桐应助鳄鱼采纳,获得10
3秒前
陶醉访梦发布了新的文献求助10
3秒前
3秒前
zzx完成签到,获得积分10
3秒前
秦亦云发布了新的文献求助10
3秒前
科研通AI6应助张鱼小王子采纳,获得10
3秒前
年轻的觅风完成签到,获得积分10
4秒前
七怪应助复杂惜霜采纳,获得10
4秒前
4秒前
4秒前
minmin959完成签到,获得积分10
5秒前
科研花完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
爱喝橘子汽水完成签到 ,获得积分10
6秒前
青鸟完成签到,获得积分10
7秒前
123456发布了新的文献求助30
7秒前
7秒前
7秒前
7秒前
开心就吃猕猴桃完成签到,获得积分10
7秒前
晒黑的雪碧完成签到,获得积分10
8秒前
lalala完成签到,获得积分10
8秒前
上官若男应助无情汉堡采纳,获得10
8秒前
呼呼大睡完成签到,获得积分10
9秒前
研友_郦闭月完成签到,获得积分10
9秒前
10秒前
10秒前
郭竞阳发布了新的文献求助10
10秒前
biubiubiu发布了新的文献求助10
10秒前
青鸟发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260929
求助须知:如何正确求助?哪些是违规求助? 4422163
关于积分的说明 13765353
捐赠科研通 4296568
什么是DOI,文献DOI怎么找? 2357408
邀请新用户注册赠送积分活动 1353709
关于科研通互助平台的介绍 1314957