清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Citrus Disease Image Generation and Classification Based on Improved FastGAN and EfficientNet-B5

鉴别器 生成对抗网络 试验装置 计算机科学 人工智能 核(代数) 模式识别(心理学) 数学 深度学习 电信 组合数学 探测器
作者
Qiufang Dai,Yuanhang Guo,Zhen Li,Shuran Song,Shilei Lyu,Daozong Sun,Yuan Wang,Ziwei Chen
出处
期刊:Agronomy [Multidisciplinary Digital Publishing Institute]
卷期号:13 (4): 988-988 被引量:7
标识
DOI:10.3390/agronomy13040988
摘要

The rapid and accurate identification of citrus leaf diseases is crucial for the sustainable development of the citrus industry. Because citrus leaf disease samples are small, unevenly distributed, and difficult to collect, we redesigned the generator structure of FastGAN and added small batch standard deviations to the discriminator to produce an enhanced model called FastGAN2, which was used for generating citrus disease and nutritional deficiency (zinc and magnesium deficiency) images. The performance of the existing model degrades significantly when the training and test data exhibit large differences in appearance or originate from different regions. To solve this problem, we propose an EfficientNet-B5 network incorporating adaptive angular margin (Arcface) loss with the adversarial weight perturbation mechanism, and we call it EfficientNet-B5-pro. The FastGAN2 network can be trained using only 50 images. The Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) are improved by 31.8% and 59.86%, respectively, compared to the original FastGAN network; 8000 images were generated using the FastGAN2 network (2000 black star disease, 2000 canker disease, 2000 healthy, 2000 deficiency). Only images generated by the FastGAN2 network were used as the training set to train the ten classification networks. Real images, which were not used to train the FastGAN2 network, were used as the test set. The average accuracy rates of the ten classification networks exceeded 93%. The accuracy, precision, recall, and F1 scores achieved by EfficientNet-B5-pro were 97.04%, 97.32%, 96.96%, and 97.09%, respectively, and they were 2.26%, 1.19%, 1.98%, and 1.86% higher than those of EfficientNet-B5, respectively. The classification network model can be successfully trained using only the images generated by FastGAN2, and EfficientNet-B5-pro has good generalization and robustness. The method used in this study can be an effective tool for citrus disease and nutritional deficiency image classification using a small number of samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
28秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
不安的晓灵完成签到 ,获得积分10
56秒前
紫熊完成签到,获得积分10
1分钟前
1分钟前
Nancy0818完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
zzz发布了新的文献求助10
1分钟前
LLLKAIXINGUO发布了新的文献求助10
2分钟前
zzz完成签到,获得积分10
2分钟前
2分钟前
2分钟前
传奇3应助科研通管家采纳,获得30
2分钟前
Arctic完成签到 ,获得积分10
2分钟前
Jessica完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
武雨寒完成签到 ,获得积分20
3分钟前
方白秋完成签到,获得积分10
3分钟前
LLLKAIXINGUO完成签到,获得积分10
4分钟前
4分钟前
冰凌心恋完成签到,获得积分10
4分钟前
娜娜完成签到 ,获得积分10
4分钟前
细雨听风完成签到,获得积分10
4分钟前
田様应助科研通管家采纳,获得10
4分钟前
4分钟前
hyjcs完成签到,获得积分0
4分钟前
as9988776654完成签到 ,获得积分10
5分钟前
默默雪旋完成签到 ,获得积分10
5分钟前
5分钟前
chenyue233完成签到,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助50
6分钟前
花园里的蒜完成签到 ,获得积分0
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
6分钟前
loen完成签到,获得积分10
6分钟前
多亿点完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596533
求助须知:如何正确求助?哪些是违规求助? 4008426
关于积分的说明 12409207
捐赠科研通 3687443
什么是DOI,文献DOI怎么找? 2032420
邀请新用户注册赠送积分活动 1065646
科研通“疑难数据库(出版商)”最低求助积分说明 950967