Citrus Disease Image Generation and Classification Based on Improved FastGAN and EfficientNet-B5

鉴别器 生成对抗网络 试验装置 计算机科学 人工智能 核(代数) 模式识别(心理学) 数学 深度学习 电信 组合数学 探测器
作者
Qiufang Dai,Yuanhang Guo,Zhen Li,Shuran Song,Shilei Lyu,Daozong Sun,Yuan Wang,Ziwei Chen
出处
期刊:Agronomy [Multidisciplinary Digital Publishing Institute]
卷期号:13 (4): 988-988 被引量:7
标识
DOI:10.3390/agronomy13040988
摘要

The rapid and accurate identification of citrus leaf diseases is crucial for the sustainable development of the citrus industry. Because citrus leaf disease samples are small, unevenly distributed, and difficult to collect, we redesigned the generator structure of FastGAN and added small batch standard deviations to the discriminator to produce an enhanced model called FastGAN2, which was used for generating citrus disease and nutritional deficiency (zinc and magnesium deficiency) images. The performance of the existing model degrades significantly when the training and test data exhibit large differences in appearance or originate from different regions. To solve this problem, we propose an EfficientNet-B5 network incorporating adaptive angular margin (Arcface) loss with the adversarial weight perturbation mechanism, and we call it EfficientNet-B5-pro. The FastGAN2 network can be trained using only 50 images. The Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) are improved by 31.8% and 59.86%, respectively, compared to the original FastGAN network; 8000 images were generated using the FastGAN2 network (2000 black star disease, 2000 canker disease, 2000 healthy, 2000 deficiency). Only images generated by the FastGAN2 network were used as the training set to train the ten classification networks. Real images, which were not used to train the FastGAN2 network, were used as the test set. The average accuracy rates of the ten classification networks exceeded 93%. The accuracy, precision, recall, and F1 scores achieved by EfficientNet-B5-pro were 97.04%, 97.32%, 96.96%, and 97.09%, respectively, and they were 2.26%, 1.19%, 1.98%, and 1.86% higher than those of EfficientNet-B5, respectively. The classification network model can be successfully trained using only the images generated by FastGAN2, and EfficientNet-B5-pro has good generalization and robustness. The method used in this study can be an effective tool for citrus disease and nutritional deficiency image classification using a small number of samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
科研通AI2S应助jitianxing采纳,获得10
2秒前
hmlee123完成签到,获得积分10
3秒前
小雪糕发布了新的文献求助10
5秒前
shadow发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
有魅力的雨雪完成签到,获得积分20
9秒前
木木应助zz采纳,获得10
11秒前
领导范儿应助Chris采纳,获得10
13秒前
zhjwu发布了新的文献求助10
13秒前
赵峰完成签到,获得积分10
13秒前
huxuehong完成签到,获得积分10
14秒前
丘比特应助艺术家脾气采纳,获得10
16秒前
李博士发布了新的文献求助10
16秒前
今后应助pumpkin采纳,获得10
17秒前
帅气的宛凝完成签到,获得积分10
18秒前
18秒前
19秒前
Foch发布了新的文献求助80
21秒前
微笑的惜海完成签到,获得积分10
21秒前
英俊的铭应助超级的吐司采纳,获得10
21秒前
jitianxing发布了新的文献求助10
22秒前
23秒前
柏达发布了新的文献求助10
23秒前
24秒前
崔崔发布了新的文献求助10
24秒前
24秒前
same发布了新的文献求助10
26秒前
27秒前
jinyue完成签到,获得积分10
28秒前
感性的早晨完成签到,获得积分10
28秒前
28秒前
萝卜不困关注了科研通微信公众号
29秒前
30秒前
科目三应助zhjwu采纳,获得10
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998784
求助须知:如何正确求助?哪些是违规求助? 3538262
关于积分的说明 11273791
捐赠科研通 3277260
什么是DOI,文献DOI怎么找? 1807481
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075