Label correlation embedding guided network for multi-label ECG arrhythmia diagnosis

相关性 模式识别(心理学) 相关系数 嵌入 人工智能 特征(语言学) 相似性(几何) 计算机科学 特征提取 班级(哲学) 数学 机器学习 几何学 语言学 图像(数学) 哲学
作者
Shaolin Ran,Xiang Li,Beizhen Zhao,Yinuo Jiang,Xiaoyun Yang,Cheng Cheng
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:270: 110545-110545 被引量:12
标识
DOI:10.1016/j.knosys.2023.110545
摘要

In clinical practice, one patient may suffer from more than one arrhythmia simultaneously, that is, one ECG record may be associated with multiple types of arrhythmias. In fact, there are inherent dependencies between arrhythmias. However, previous studies have mainly focused on multi-class (single-label) ECG classification, which addresses each type of arrhythmia independently and ignores the multi-label correlation between different ECG abnormalities. To address the lack of ECG multi-label classification methods, we proposed a label correlation embedding guided network (LCEGNet) model to effectively recognize multi-label ECG arrhythmias and explore the correlation between ECG abnormalities. First, label correlation embedding was obtained based on the correlation matrix between different arrhythmias to guide feature extraction. Subsequently, the category-specific attention coefficient was obtained by calculating the cosine similarity coefficient between the label embedding and feature spaces. Experiments on public and self-collected ECG datasets were conducted. The LCEGNet achieved F1 scores of 0.777 and 0.872 and subset accuracy of 0.750 and 0.828 on the two datasets, respectively. A classification speed of 7.796 ms was achieved. The experimental results demonstrate that the proposed LCEGNet achieved approximately a 11% and 9.1% improvement in the F1 score and subset accuracy, respectively, compared with traditional ResNet architecture and a 4.3% and 5.54% improvement in the F1 score and subset accuracy, respectively, compared with the state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinysparrow应助静穆儿采纳,获得110
刚刚
刚刚
Na发布了新的文献求助10
1秒前
1秒前
2秒前
小桃子完成签到,获得积分20
2秒前
2秒前
2秒前
4秒前
JUNJIU发布了新的文献求助20
5秒前
wangzai完成签到,获得积分10
5秒前
熙子发布了新的文献求助10
5秒前
帅气绮露发布了新的文献求助10
8秒前
hhan发布了新的文献求助10
8秒前
yyyyzhu应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得30
9秒前
大个应助科研通管家采纳,获得10
9秒前
yuji238应助科研通管家采纳,获得10
9秒前
嘉心糖应助科研通管家采纳,获得20
9秒前
听雨发布了新的文献求助10
9秒前
9秒前
orixero应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
嘉心糖应助科研通管家采纳,获得30
10秒前
10秒前
10秒前
10秒前
yyyyzhu应助科研通管家采纳,获得10
10秒前
荔枝波波加油完成签到 ,获得积分10
11秒前
今后应助Joe采纳,获得10
14秒前
痴情的萃发布了新的文献求助10
14秒前
SunnyZjw完成签到,获得积分10
14秒前
xm发布了新的文献求助10
15秒前
SciGPT应助hhan采纳,获得10
16秒前
16秒前
dd完成签到,获得积分10
16秒前
沉默的婴发布了新的文献求助10
18秒前
显隐发布了新的文献求助10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313855
求助须知:如何正确求助?哪些是违规求助? 2946137
关于积分的说明 8528616
捐赠科研通 2621703
什么是DOI,文献DOI怎么找? 1434035
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650691