Effect of nano-Cu addition on the diffusion behaviors of Dy in hot-deformed Nd-Fe-B magnets

矫顽力 材料科学 磁铁 剩磁 晶界 相(物质) 扩散 合金 冶金 纳米- 晶界扩散系数 微观结构 分析化学(期刊) 复合材料 凝聚态物理 磁化 化学 磁场 热力学 物理 有机化学 量子力学 色谱法
作者
Xianshuang Xia,Guantong Wei,Lian Wu,Yeyuan Du,Xu Tang,Jinyun Ju,Haichen Wu,Renjie Chen,Wen Yin,Aru Yan
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:952: 170014-170014 被引量:2
标识
DOI:10.1016/j.jallcom.2023.170014
摘要

It is a major challenge for Nd-Fe-B based permanent magnets to improve the utilization of heavy rare-earth resources. For enhancing the diffusion efficiency of heavy rare-earth elements in the hot-deformed Nd-Fe-B magnets, an intergranular diffusion of DyF3 aided by a trace of nano-Cu was implemented by dual alloy process. Through the trace addition (0.2 wt%) of nano-Cu, the coercivity increment of the Cu-containing magnet is higher than that of the Cu-free magnet after the diffusion of DyF3, and the remanence was maintained at a high level. SEM results revealed that a considerable amount of bulky elongated Dy-rich phase was blocked by (Nd,Pr)-rich phase and hardly infiltrated into powder flakes in the Cu-free magnet. But most of the bulky Dy-rich phase dissolved and infiltrated into adjacent powder flakes with the aid of nano-Cu. TEM results revealed that the Dy concentrations of main phase and grain boundary phase in the Cu-containing magnet are both higher than those in the Cu-free magnet. SEM and TEM results confirmed that the trace addition of nano-Cu contributes to the diffusion of Dy into the main phase and grain boundary phase at the surface of powder flakes, which is the main reason for the further enhancement of coercivity. Further discussions on the enhancement mechanism of coercivity were made by using micromagnetic simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快的访旋完成签到,获得积分10
刚刚
Alpha完成签到,获得积分10
1秒前
大大发布了新的文献求助30
1秒前
翠翠发布了新的文献求助10
2秒前
半山发布了新的文献求助10
3秒前
3秒前
天天快乐应助CO2采纳,获得10
3秒前
隐形曼青应助junzilan采纳,获得10
4秒前
Dksido发布了新的文献求助10
4秒前
5秒前
思源应助卓哥采纳,获得10
5秒前
mysci完成签到,获得积分10
8秒前
9秒前
Quzhengkai发布了新的文献求助10
10秒前
10秒前
11秒前
落寞晓灵完成签到,获得积分10
11秒前
ORAzzz应助翠翠采纳,获得20
12秒前
zoe完成签到,获得积分10
12秒前
习习应助学术小白采纳,获得10
12秒前
13秒前
14秒前
tianny关注了科研通微信公众号
15秒前
15秒前
CO2发布了新的文献求助10
15秒前
桐桐应助zhangscience采纳,获得10
16秒前
求助发布了新的文献求助10
17秒前
buno应助zoe采纳,获得10
18秒前
junzilan发布了新的文献求助10
18秒前
18秒前
细品岁月完成签到 ,获得积分10
18秒前
细心书蕾完成签到 ,获得积分10
19秒前
无花果应助l11x29采纳,获得10
21秒前
21秒前
老詹头发布了新的文献求助10
21秒前
思源应助叫滚滚采纳,获得10
22秒前
23秒前
刘歌完成签到 ,获得积分10
23秒前
阿巡完成签到,获得积分10
23秒前
Chen完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808