清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Single-cell RNA sequencing and transcriptomic analysis reveal key genes and regulatory mechanisms in sepsis

生物 转录组 基因 RNA序列 计算生物学 核糖核酸 遗传学 基因表达
作者
Qingping Mo,Qingying Mo,Fansen Mo
出处
期刊:Biotechnology & Genetic Engineering Reviews [Informa]
卷期号:: 1-23 被引量:1
标识
DOI:10.1080/02648725.2023.2196475
摘要

ABSTRACTThe pathogenesis of sepsis, with a high mortality rate and often poor prognosis, has not been fully elucidated. Therefore, an in-depth study on the pathogenesis of sepsis at the molecular level is essential to identify key sepsis-related genes. The aim of this study was to explore the key genes and potential molecular mechanisms of sepsis using a bioinformatics approach. In addition, key genes with miRNA network correlation analysis and immune infiltration correlation analysis were investigated. The scRNA dataset (GSE167363) and RNA-seq dataset (GSE65682, GSE134347) from GEO database were used for screening out differentially expressed genes using single-cell sequencing and transcriptome sequencing. The analysis of immune infiltration was evaluated by the CIBERSORT method. Key genes and possible mechanisms were identified by WGCNA analysis, GSVA analysis, GSEA enrichment analysis and regulatory network analysis, and miRNA networks associated with key genes were constructed. Nine key genes associated with the development of sepsis, namely IL7R, CD3D, IL32, GPR183, HLA-DPB1, CD81, PEBP1, NCL, and ETS1 were screened, and the specific signaling mechanisms associated with the key genes causing sepsis were predicted. Immune profiling showed immune heterogeneity between control and sepsis samples. A regulatory network of 82 miRNAs, 266 pairs of mRNA-miRNA relationship pairs was also constructed. These nine key genes have the potential to become biomarkers for the diagnosis of sepsis and provide new targets and research directions for the treatment of sepsis.KEYWORDS: Sepsiskey genesmiRNAimmune infiltration Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementThe datasets included in this study are available from the online public database. The data that support our findings are available from the databases: GEO database (https://www.ncbi.nlm.nih.gov/geo/info/datasets.html), Gene Atlas gene mapping database (http://geneatlas.roslin.ed.ac.uk/) and GeneCards database(https://www.genecards.org/).AbbreviationsGEO database: Gene Expression Omnibus; NCBI: National Center for Biotechnology Information; TSNE: T-Distributed Stochastic Neighbor Embedding; PCA: Principal Component Analysis; WGCNA: Weighted Gene Co-expression Network Analysis; TOM: Topological Overlap Matrix; GSVA: Gene Set Variance Analysis; GSEA: Gene Set Enrichment Analysis; GWAS: Genome-wide Association Study; NES: Normalized Enrichment Score; Cmap database: Connectivity Map; KEGG: Kyoto Encyclopedia of Genes and Genomes; SNP: Single Nucleotide Polymorphisms; LASSO: Least absolute shrinkage and selection operator; ROC: Receiver-operating characteristic; AUC: Area under the ROC curve; MHC: Major Histocompatibility Complex; PC: principal Component;Author contributionsConceptualization, QPM, FSM; writing-original draft pre-paration, QPM, QYM, FSM; writing – review and editing, QPM, QYM, FSM. All authors reviewed and approved the final version of the manuscript. All authors read and approved the final manuscript.Supplemental dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/02648725.2023.2196475.Additional informationFundingThere is no funding to report.Notes on contributorsQingping MoQingping Mo is a graduate of Southern Medical University with a master's degree and has received 3 years of residency training in Zhujiang Hospital of Southern Medical University.Qingying MoQingying Mo received her undergraduate clinical hospital education for 5 years at Shuda College of Hunan Normal University and has now graduated with her undergraduate degree.Fansen MoFanSen Mo received 5 years of undergraduate education in clinical medicine at South China University and has now graduated with his undergraduate degree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有人应助科研通管家采纳,获得10
16秒前
有人应助科研通管家采纳,获得10
17秒前
有人应助科研通管家采纳,获得10
17秒前
有人应助科研通管家采纳,获得10
17秒前
有人应助科研通管家采纳,获得10
17秒前
baolong完成签到,获得积分10
27秒前
jeff发布了新的文献求助30
55秒前
姚老表完成签到,获得积分10
1分钟前
爆米花应助hani采纳,获得10
1分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得30
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
thangxtz完成签到,获得积分10
2分钟前
李健应助zhangyimg采纳,获得10
2分钟前
云木完成签到 ,获得积分10
3分钟前
方白秋完成签到,获得积分10
3分钟前
yangquanquan完成签到,获得积分10
3分钟前
3分钟前
zhangyimg发布了新的文献求助10
3分钟前
merrylake完成签到 ,获得积分10
3分钟前
仿真小学生完成签到,获得积分10
4分钟前
有人应助科研通管家采纳,获得10
4分钟前
有人应助科研通管家采纳,获得30
4分钟前
GCD完成签到 ,获得积分10
4分钟前
6分钟前
烨枫晨曦完成签到,获得积分10
6分钟前
feiying发布了新的文献求助10
6分钟前
6分钟前
feiying完成签到,获得积分10
6分钟前
紫熊发布了新的文献求助10
7分钟前
7分钟前
Philip发布了新的文献求助10
7分钟前
8分钟前
hani发布了新的文献求助10
8分钟前
hani完成签到,获得积分10
8分钟前
紫熊完成签到,获得积分10
9分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146771
求助须知:如何正确求助?哪些是违规求助? 2798063
关于积分的说明 7826669
捐赠科研通 2454589
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527