Single-cell RNA sequencing and transcriptomic analysis reveal key genes and regulatory mechanisms in sepsis

生物 转录组 基因 RNA序列 计算生物学 核糖核酸 遗传学 基因表达
作者
Qingping Mo,Qingying Mo,Fansen Mo
出处
期刊:Biotechnology & Genetic Engineering Reviews [Informa]
卷期号:40 (3): 1636-1658 被引量:3
标识
DOI:10.1080/02648725.2023.2196475
摘要

ABSTRACTThe pathogenesis of sepsis, with a high mortality rate and often poor prognosis, has not been fully elucidated. Therefore, an in-depth study on the pathogenesis of sepsis at the molecular level is essential to identify key sepsis-related genes. The aim of this study was to explore the key genes and potential molecular mechanisms of sepsis using a bioinformatics approach. In addition, key genes with miRNA network correlation analysis and immune infiltration correlation analysis were investigated. The scRNA dataset (GSE167363) and RNA-seq dataset (GSE65682, GSE134347) from GEO database were used for screening out differentially expressed genes using single-cell sequencing and transcriptome sequencing. The analysis of immune infiltration was evaluated by the CIBERSORT method. Key genes and possible mechanisms were identified by WGCNA analysis, GSVA analysis, GSEA enrichment analysis and regulatory network analysis, and miRNA networks associated with key genes were constructed. Nine key genes associated with the development of sepsis, namely IL7R, CD3D, IL32, GPR183, HLA-DPB1, CD81, PEBP1, NCL, and ETS1 were screened, and the specific signaling mechanisms associated with the key genes causing sepsis were predicted. Immune profiling showed immune heterogeneity between control and sepsis samples. A regulatory network of 82 miRNAs, 266 pairs of mRNA-miRNA relationship pairs was also constructed. These nine key genes have the potential to become biomarkers for the diagnosis of sepsis and provide new targets and research directions for the treatment of sepsis.KEYWORDS: Sepsiskey genesmiRNAimmune infiltration Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementThe datasets included in this study are available from the online public database. The data that support our findings are available from the databases: GEO database (https://www.ncbi.nlm.nih.gov/geo/info/datasets.html), Gene Atlas gene mapping database (http://geneatlas.roslin.ed.ac.uk/) and GeneCards database(https://www.genecards.org/).AbbreviationsGEO database: Gene Expression Omnibus; NCBI: National Center for Biotechnology Information; TSNE: T-Distributed Stochastic Neighbor Embedding; PCA: Principal Component Analysis; WGCNA: Weighted Gene Co-expression Network Analysis; TOM: Topological Overlap Matrix; GSVA: Gene Set Variance Analysis; GSEA: Gene Set Enrichment Analysis; GWAS: Genome-wide Association Study; NES: Normalized Enrichment Score; Cmap database: Connectivity Map; KEGG: Kyoto Encyclopedia of Genes and Genomes; SNP: Single Nucleotide Polymorphisms; LASSO: Least absolute shrinkage and selection operator; ROC: Receiver-operating characteristic; AUC: Area under the ROC curve; MHC: Major Histocompatibility Complex; PC: principal Component;Author contributionsConceptualization, QPM, FSM; writing-original draft pre-paration, QPM, QYM, FSM; writing – review and editing, QPM, QYM, FSM. All authors reviewed and approved the final version of the manuscript. All authors read and approved the final manuscript.Supplemental dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/02648725.2023.2196475.Additional informationFundingThere is no funding to report.Notes on contributorsQingping MoQingping Mo is a graduate of Southern Medical University with a master's degree and has received 3 years of residency training in Zhujiang Hospital of Southern Medical University.Qingying MoQingying Mo received her undergraduate clinical hospital education for 5 years at Shuda College of Hunan Normal University and has now graduated with her undergraduate degree.Fansen MoFanSen Mo received 5 years of undergraduate education in clinical medicine at South China University and has now graduated with his undergraduate degree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助桶桶要好好学习采纳,获得10
刚刚
1秒前
不辞完成签到,获得积分10
1秒前
ry发布了新的文献求助10
1秒前
song完成签到,获得积分10
1秒前
明亮无颜完成签到,获得积分10
1秒前
2秒前
2秒前
小慈爱鸡完成签到 ,获得积分10
2秒前
2秒前
英俊的铭应助麻麻采纳,获得10
2秒前
97b1完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
羊羊羊发布了新的文献求助30
4秒前
5秒前
5秒前
再沉默完成签到,获得积分10
6秒前
6秒前
6秒前
明亮无颜发布了新的文献求助20
7秒前
7秒前
谁还没有个生活完成签到,获得积分10
7秒前
Feng发布了新的文献求助10
7秒前
zzz发布了新的文献求助10
7秒前
MailkMonk发布了新的文献求助10
7秒前
7秒前
xuxuxu完成签到,获得积分10
8秒前
文龙完成签到 ,获得积分10
8秒前
ximomm完成签到,获得积分10
8秒前
无不破哉发布了新的文献求助10
8秒前
8秒前
研友_bZzkR8完成签到,获得积分10
9秒前
XIXI发布了新的文献求助30
9秒前
再沉默发布了新的文献求助10
10秒前
子俞发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678