Single-cell RNA sequencing and transcriptomic analysis reveal key genes and regulatory mechanisms in sepsis

生物 转录组 基因 RNA序列 计算生物学 核糖核酸 遗传学 基因表达
作者
Qingping Mo,Qingying Mo,Fansen Mo
出处
期刊:Biotechnology & Genetic Engineering Reviews [Taylor & Francis]
卷期号:40 (3): 1636-1658 被引量:4
标识
DOI:10.1080/02648725.2023.2196475
摘要

ABSTRACTThe pathogenesis of sepsis, with a high mortality rate and often poor prognosis, has not been fully elucidated. Therefore, an in-depth study on the pathogenesis of sepsis at the molecular level is essential to identify key sepsis-related genes. The aim of this study was to explore the key genes and potential molecular mechanisms of sepsis using a bioinformatics approach. In addition, key genes with miRNA network correlation analysis and immune infiltration correlation analysis were investigated. The scRNA dataset (GSE167363) and RNA-seq dataset (GSE65682, GSE134347) from GEO database were used for screening out differentially expressed genes using single-cell sequencing and transcriptome sequencing. The analysis of immune infiltration was evaluated by the CIBERSORT method. Key genes and possible mechanisms were identified by WGCNA analysis, GSVA analysis, GSEA enrichment analysis and regulatory network analysis, and miRNA networks associated with key genes were constructed. Nine key genes associated with the development of sepsis, namely IL7R, CD3D, IL32, GPR183, HLA-DPB1, CD81, PEBP1, NCL, and ETS1 were screened, and the specific signaling mechanisms associated with the key genes causing sepsis were predicted. Immune profiling showed immune heterogeneity between control and sepsis samples. A regulatory network of 82 miRNAs, 266 pairs of mRNA-miRNA relationship pairs was also constructed. These nine key genes have the potential to become biomarkers for the diagnosis of sepsis and provide new targets and research directions for the treatment of sepsis.KEYWORDS: Sepsiskey genesmiRNAimmune infiltration Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementThe datasets included in this study are available from the online public database. The data that support our findings are available from the databases: GEO database (https://www.ncbi.nlm.nih.gov/geo/info/datasets.html), Gene Atlas gene mapping database (http://geneatlas.roslin.ed.ac.uk/) and GeneCards database(https://www.genecards.org/).AbbreviationsGEO database: Gene Expression Omnibus; NCBI: National Center for Biotechnology Information; TSNE: T-Distributed Stochastic Neighbor Embedding; PCA: Principal Component Analysis; WGCNA: Weighted Gene Co-expression Network Analysis; TOM: Topological Overlap Matrix; GSVA: Gene Set Variance Analysis; GSEA: Gene Set Enrichment Analysis; GWAS: Genome-wide Association Study; NES: Normalized Enrichment Score; Cmap database: Connectivity Map; KEGG: Kyoto Encyclopedia of Genes and Genomes; SNP: Single Nucleotide Polymorphisms; LASSO: Least absolute shrinkage and selection operator; ROC: Receiver-operating characteristic; AUC: Area under the ROC curve; MHC: Major Histocompatibility Complex; PC: principal Component;Author contributionsConceptualization, QPM, FSM; writing-original draft pre-paration, QPM, QYM, FSM; writing – review and editing, QPM, QYM, FSM. All authors reviewed and approved the final version of the manuscript. All authors read and approved the final manuscript.Supplemental dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/02648725.2023.2196475.Additional informationFundingThere is no funding to report.Notes on contributorsQingping MoQingping Mo is a graduate of Southern Medical University with a master's degree and has received 3 years of residency training in Zhujiang Hospital of Southern Medical University.Qingying MoQingying Mo received her undergraduate clinical hospital education for 5 years at Shuda College of Hunan Normal University and has now graduated with her undergraduate degree.Fansen MoFanSen Mo received 5 years of undergraduate education in clinical medicine at South China University and has now graduated with his undergraduate degree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默的觅风完成签到 ,获得积分10
刚刚
Lucas应助Morton采纳,获得10
1秒前
LHJ发布了新的文献求助30
1秒前
研友_VZG7GZ应助自由的松采纳,获得10
1秒前
圆圆完成签到 ,获得积分10
2秒前
2秒前
3秒前
pp猪猪发布了新的文献求助10
3秒前
kk发布了新的文献求助10
4秒前
5秒前
今后应助小杰要读博采纳,获得10
5秒前
5秒前
蜀山发布了新的文献求助10
6秒前
7秒前
axis发布了新的文献求助10
7秒前
徐小徐发布了新的文献求助10
7秒前
柯一一应助zyy_cwdl采纳,获得10
7秒前
8秒前
LHJ完成签到,获得积分20
8秒前
CodeCraft应助故意的驳采纳,获得10
9秒前
彭于晏应助蜀山采纳,获得10
9秒前
9秒前
8R60d8应助潇洒飞丹采纳,获得10
10秒前
彳亍1117应助潇洒飞丹采纳,获得10
10秒前
小豆豆应助潇洒飞丹采纳,获得10
10秒前
大方芷文完成签到,获得积分10
12秒前
kk发布了新的文献求助10
12秒前
12秒前
8R60d8应助Koi_采纳,获得10
12秒前
香蕉觅云应助pp猪猪采纳,获得10
13秒前
Owen应助kk采纳,获得10
14秒前
蝴蝶变成毛毛虫完成签到,获得积分10
15秒前
15秒前
王SQ完成签到 ,获得积分10
16秒前
蜀山完成签到,获得积分10
17秒前
科研通AI2S应助Georges-09采纳,获得10
18秒前
奶盖呀完成签到 ,获得积分20
19秒前
19秒前
21秒前
dyvdyvaass发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502770
关于积分的说明 11110029
捐赠科研通 3233693
什么是DOI,文献DOI怎么找? 1787452
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152