Survival Prediction via Hierarchical Multimodal Co-Attention Transformer: A Computational Histology-Radiology Solution

计算机科学 人工智能 模式 特征(语言学) 可解释性 机器学习 放射科 模式识别(心理学) 医学 社会科学 语言学 哲学 社会学
作者
Zhe Li,Yuming Jiang,Mengkang Lu,Ruijiang Li,Yong Xia
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2678-2689 被引量:18
标识
DOI:10.1109/tmi.2023.3263010
摘要

The rapid advances in deep learning-based computational pathology and radiology have demonstrated the promise of using whole slide images (WSIs) and radiology images for survival prediction in cancer patients. However, most image-based survival prediction methods are limited to using either histology or radiology alone, leaving integrated approaches across histology and radiology relatively underdeveloped. There are two main challenges in integrating WSIs and radiology images: (1) the gigapixel nature of WSIs and (2) the vast difference in spatial scales between WSIs and radiology images. To address these challenges, in this work, we propose an interpretable, weakly-supervised, multimodal learning framework, called Hierarchical Multimodal Co-Attention Transformer (HMCAT), to integrate WSIs and radiology images for survival prediction. Our approach first uses hierarchical feature extractors to capture various information including cellular features, cellular organization, and tissue phenotypes in WSIs. Then the hierarchical radiology-guided co- attention (HRCA) in HMCAT characterizes the multimodal interactions between hierarchical histology-based visual concepts and radiology features and learns hierarchical co- attention mappings for two modalities. Finally, HMCAT combines their complementary information into a multimodal risk score and discovers prognostic features from two modalities by multimodal interpretability. We apply our approach to two cancer datasets (365 WSIs with matched magnetic resonance [MR] images and 213 WSIs with matched computed tomography [CT] images). Our results demonstrate that the proposed HMCAT consistently achieves superior performance over the unimodal approaches trained on either histology or radiology data alone, as well as other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮幻莲发布了新的文献求助10
刚刚
海洋发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
651应助wry采纳,获得10
3秒前
知不道发布了新的文献求助20
3秒前
3秒前
Ms完成签到,获得积分10
3秒前
Dunley发布了新的文献求助10
4秒前
121发布了新的文献求助10
5秒前
彩色愚志完成签到,获得积分10
5秒前
SCI的芷蝶发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
语冰发布了新的文献求助10
8秒前
梅痕公子发布了新的文献求助10
8秒前
9秒前
大个应助小郭采纳,获得10
10秒前
新生木木发布了新的文献求助10
10秒前
Dunley完成签到,获得积分20
10秒前
CFC12发布了新的文献求助10
11秒前
闪闪的硬币完成签到 ,获得积分10
11秒前
李健的粉丝团团长应助vgh采纳,获得10
12秒前
爆米花应助威武鸽子采纳,获得10
12秒前
稳重的安萱完成签到,获得积分10
15秒前
钊钊照照朝朝完成签到,获得积分10
15秒前
传奇3应助吱哦周采纳,获得10
16秒前
顺利一江完成签到,获得积分10
16秒前
mulidexin2021完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
18秒前
19秒前
summer完成签到,获得积分10
19秒前
19秒前
19秒前
xy完成签到,获得积分10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732069
求助须知:如何正确求助?哪些是违规求助? 3276463
关于积分的说明 9997152
捐赠科研通 2991940
什么是DOI,文献DOI怎么找? 1641970
邀请新用户注册赠送积分活动 780070
科研通“疑难数据库(出版商)”最低求助积分说明 748700