Physics-Driven Deep Learning Inversion for Direct Current Resistivity Survey Data

反演(地质) 反问题 电阻率和电导率 平滑的 计算机科学 地球物理学 算法 合成数据 深度学习 人工智能 机器学习 地质学 物理 数学 地震学 数学分析 计算机视觉 量子力学 构造学
作者
Bin Liu,Yonghao Pang,Peng Jiang,Zhengyu Liu,Benchao Liu,Yongheng Zhang,Yumei Cai,Jiawen Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:3
标识
DOI:10.1109/tgrs.2023.3263842
摘要

The direct-current (DC) resistivity method is a commonly used geophysical technique for surveying adverse geological conditions. Inversion can reconstruct the resistivity model from data, which is an important step in the geophysical survey. However, the inverse problem is a serious ill-posed problem that makes it easy to obtain incorrect inversion results. Deep learning (DL) provides new avenues for solving inverse problems, and has been widely studied. Currently, most DL inversion methods for resistivity are purely data-driven and depend heavily on labels (real resistivity models). However, real resistivity models are difficult to obtain through field surveys. An inversion network may not be effectively trained without labels. In this study, we built an unsupervised learning resistivity inversion scheme based on the physical law of electric field propagation. First, a forward modeling process was embedded into the network training, which converted the predicted model to predicted data and formed a data misfit to the observation data. Unsupervised training independent of the real model was realized using the data misfit as a loss function. Moreover, a dynamic smoothing constraint was imposed on the loss function to alleviate the ill-posed inverse problem. Finally, a transfer learning scheme was applied to adapt the trained network with simulated data to field data. Numerical simulations and field tests showed that the proposed method can accurately locate and depict geological targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千念集暮节完成签到,获得积分10
刚刚
会飞的鱼完成签到,获得积分10
刚刚
刚刚
1秒前
俗人完成签到,获得积分10
2秒前
2秒前
tyy完成签到,获得积分10
2秒前
orange应助许垲锋采纳,获得10
2秒前
黄梦娇发布了新的文献求助10
2秒前
2秒前
3秒前
qwe完成签到,获得积分10
3秒前
黄玉发布了新的文献求助10
3秒前
木槿发布了新的文献求助10
3秒前
3秒前
小时光发布了新的文献求助30
3秒前
4秒前
4秒前
4秒前
孙翘楚发布了新的文献求助10
4秒前
4秒前
大个应助诸事顺利采纳,获得10
4秒前
4秒前
5秒前
5秒前
李李李发布了新的文献求助10
5秒前
my发布了新的文献求助10
5秒前
必须发顶刊完成签到,获得积分10
6秒前
hailee发布了新的文献求助10
6秒前
柏林完成签到,获得积分10
7秒前
刘科技发布了新的文献求助10
7秒前
阿谭发布了新的文献求助10
7秒前
小李完成签到,获得积分10
8秒前
8秒前
8秒前
Xorgan发布了新的文献求助10
9秒前
VictorySaber完成签到 ,获得积分10
9秒前
小伍完成签到,获得积分10
9秒前
装饭的桶发布了新的文献求助10
9秒前
传奇3应助XXXX采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Integrating supply and demand-side management in renewable-based energy systems 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251098
求助须知:如何正确求助?哪些是违规求助? 4415232
关于积分的说明 13745342
捐赠科研通 4286905
什么是DOI,文献DOI怎么找? 2352133
邀请新用户注册赠送积分活动 1349017
关于科研通互助平台的介绍 1308502