Physics-Driven Deep Learning Inversion for Direct Current Resistivity Survey Data

反演(地质) 反问题 电阻率和电导率 平滑的 计算机科学 地球物理学 算法 合成数据 深度学习 人工智能 机器学习 地质学 物理 数学 地震学 数学分析 计算机视觉 量子力学 构造学
作者
Bin Liu,Yonghao Pang,Peng Jiang,Zhengyu Liu,Benchao Liu,Yongheng Zhang,Yumei Cai,Jiawen Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:3
标识
DOI:10.1109/tgrs.2023.3263842
摘要

The direct-current (DC) resistivity method is a commonly used geophysical technique for surveying adverse geological conditions. Inversion can reconstruct the resistivity model from data, which is an important step in the geophysical survey. However, the inverse problem is a serious ill-posed problem that makes it easy to obtain incorrect inversion results. Deep learning (DL) provides new avenues for solving inverse problems, and has been widely studied. Currently, most DL inversion methods for resistivity are purely data-driven and depend heavily on labels (real resistivity models). However, real resistivity models are difficult to obtain through field surveys. An inversion network may not be effectively trained without labels. In this study, we built an unsupervised learning resistivity inversion scheme based on the physical law of electric field propagation. First, a forward modeling process was embedded into the network training, which converted the predicted model to predicted data and formed a data misfit to the observation data. Unsupervised training independent of the real model was realized using the data misfit as a loss function. Moreover, a dynamic smoothing constraint was imposed on the loss function to alleviate the ill-posed inverse problem. Finally, a transfer learning scheme was applied to adapt the trained network with simulated data to field data. Numerical simulations and field tests showed that the proposed method can accurately locate and depict geological targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助cs采纳,获得10
1秒前
2秒前
2秒前
A宇发布了新的文献求助10
2秒前
DX发布了新的文献求助40
4秒前
虚心谷丝完成签到 ,获得积分10
5秒前
所所应助冷酷芫采纳,获得10
5秒前
李爱国应助yenist采纳,获得10
6秒前
Singularity发布了新的文献求助10
8秒前
传奇3应助涂楚捷采纳,获得10
8秒前
9秒前
NZH关闭了NZH文献求助
10秒前
10秒前
12秒前
13秒前
13秒前
Liu_Ci发布了新的文献求助10
13秒前
13秒前
1234完成签到,获得积分10
15秒前
16秒前
汉库克发布了新的文献求助20
16秒前
李雪慧发布了新的文献求助10
16秒前
17秒前
清秀元霜发布了新的文献求助10
17秒前
Minbao发布了新的文献求助10
18秒前
陈十六完成签到,获得积分20
18秒前
19秒前
坦率的访彤完成签到,获得积分10
21秒前
shy发布了新的文献求助30
21秒前
21秒前
juju发布了新的文献求助10
22秒前
冷安完成签到 ,获得积分10
23秒前
清秀元霜完成签到,获得积分20
23秒前
李雪慧完成签到,获得积分10
25秒前
煜钧完成签到 ,获得积分10
26秒前
27秒前
可爱的函函应助甜的瓜采纳,获得10
27秒前
Minbao完成签到,获得积分10
28秒前
xiaoma发布了新的文献求助10
31秒前
32秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125633
求助须知:如何正确求助?哪些是违规求助? 2775924
关于积分的说明 7728426
捐赠科研通 2431401
什么是DOI,文献DOI怎么找? 1291999
科研通“疑难数据库(出版商)”最低求助积分说明 622301
版权声明 600376