Ion coordination to improve ionic conductivity in polymer electrolytes for high performance solid-state batteries

材料科学 离子电导率 电解质 离子 环氧乙烷 锂(药物) 电导率 氧化物 离子键合 聚合物 陶瓷 纳米颗粒 快离子导体 化学工程 无机化学 纳米技术 电极 有机化学 物理化学 化学 复合材料 冶金 内分泌学 工程类 医学 共聚物
作者
Qingyun Liu,Tong Yu,Huicong Yang,Shengjun Xu,Hucheng Li,Ke Chen,Ruogu Xu,Tianya Zhou,Zhenhua Sun,Feng Li
出处
期刊:Nano Energy [Elsevier]
卷期号:103: 107763-107763 被引量:38
标识
DOI:10.1016/j.nanoen.2022.107763
摘要

Polymer electrolytes with high ionic conductivity and good mechanical stability, which can be achieved by the incorporation of oxide ceramics into polymer electrolytes, are critical for solid-state batteries. However, it is challenging to obtain selectivity and efficiency of lithium-ion (Li+) transport enhancements in polymer electrolytes by oxide ceramic additives because the free volume increase in the polymer matrix by oxide ceramic-polymer interactions facilitates simultaneous Li+ and anion transport. Herein, cerium-zirconium oxide (ZrxCe(1−x)O2) nanoparticles are demonstrated to be an effective additive for ion coordination modification to selectively improve Li+ transport in poly (ethylene oxide) (PEO) electrolytes. By anion adsorption using ZrxCe(1−x)O2 nanoparticles, the ionic interaction between Li+ and bis(trifluoromethanesulfon)imide (TFSI-) is weakened, the proportion of PEO-TFSI- mixed coordination with Li+ is reduced, and Li+ coordination is modified. Therefore, after Li+ coordination modification, the PEO electrolyte with Zr0.5Ce0.5O2 nanoparticles achieves a high ionic conductivity of 7.3 × 10−5 S cm−1 and a high lithium transfer number of 0.42 at 30 ºC. Our work suggests that ion coordination modification by oxide ceramics can selectively improve the solid diffusion kinetics of Li+. This research provides new insights into the mechanism of Li+ transport.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
i3utter完成签到,获得积分10
1秒前
老福贵儿应助smallsix采纳,获得10
3秒前
田様应助小华安采纳,获得10
4秒前
4秒前
wx0816发布了新的文献求助10
4秒前
ZOE应助大力蚂蚁采纳,获得50
5秒前
科目三应助退休小行星采纳,获得10
6秒前
8秒前
kk完成签到 ,获得积分10
8秒前
10秒前
10秒前
13秒前
zz发布了新的文献求助10
13秒前
wx0816完成签到,获得积分10
13秒前
14秒前
JingjingYao完成签到,获得积分10
15秒前
weiwei完成签到,获得积分10
15秒前
DD0066发布了新的文献求助10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
ieee拯救者完成签到,获得积分10
16秒前
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
lexi应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
zhonglv7应助科研通管家采纳,获得10
17秒前
曾无忧应助科研通管家采纳,获得10
17秒前
曾无忧应助科研通管家采纳,获得10
17秒前
曾无忧应助科研通管家采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
如溪如何完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603927
求助须知:如何正确求助?哪些是违规求助? 4688787
关于积分的说明 14856110
捐赠科研通 4695468
什么是DOI,文献DOI怎么找? 2541034
邀请新用户注册赠送积分活动 1507185
关于科研通互助平台的介绍 1471832