Continual learning fault diagnosis: A dual-branch adaptive aggregation residual network for fault diagnosis with machine increments

断层(地质) 遗忘 计算机科学 残余物 人工智能 理论(学习稳定性) 机器学习 算法 语言学 地质学 哲学 地震学
作者
Bojian Chen,Changqing Shen,Juanjuan Shi,Lin Kong,Luyang Tan,Dong Wang,Zhongkui Zhu
出处
期刊:Chinese Journal of Aeronautics [Elsevier]
卷期号:36 (6): 361-377 被引量:23
标识
DOI:10.1016/j.cja.2022.08.019
摘要

As a data-driven approach, deep learning (DL)-based fault diagnosis methods need to collect the relatively comprehensive data on machine fault types to achieve satisfactory performance. A mechanical system may include multiple submachines in the real-world. During condition monitoring of a mechanical system, fault data are distributed in a continuous flow of constantly generated information and new faults will inevitably occur in unconsidered submachines, which are also called machine increments. Therefore, adequately collecting fault data in advance is difficult. Limited by the characteristics of DL, training existing models directly with new fault data of new submachines leads to catastrophic forgetting of old tasks, while the cost of collecting all known data to retrain the models is excessively high. DL-based fault diagnosis methods cannot learn continually and adaptively in dynamic environments. A new continual learning fault diagnosis method (CLFD) is proposed in this paper to solve a series of fault diagnosis tasks with machine increments. The stability–plasticity dilemma is an intrinsic issue in continual learning. The core of CLFD is the proposed dual-branch adaptive aggregation residual network (DAARN). Two types of residual blocks are created in each block layer of DAARN: steady and dynamic blocks. The stability–plasticity dilemma is solved by assigning them with adaptive aggregation weights to balance stability and plasticity, and a bi-level optimization program is used to optimize adaptive aggregation weights and model parameters. In addition, a feature-level knowledge distillation loss function is proposed to further overcome catastrophic forgetting. CLFD is then applied to the fault diagnosis case with machine increments. Results demonstrate that CLFD outperforms other continual learning methods and has satisfactory robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无名欧文关注了科研通微信公众号
刚刚
科研123完成签到,获得积分10
2秒前
crescent完成签到 ,获得积分10
4秒前
无奈傲菡发布了新的文献求助10
4秒前
烟花应助123号采纳,获得10
7秒前
超帅的遥完成签到,获得积分10
7秒前
Zxc完成签到,获得积分10
8秒前
lbt完成签到 ,获得积分10
9秒前
yao完成签到 ,获得积分10
10秒前
10秒前
12秒前
13秒前
13秒前
doudou完成签到 ,获得积分10
13秒前
BCS完成签到,获得积分10
13秒前
领导范儿应助KYN采纳,获得10
13秒前
14秒前
独特的莫言完成签到,获得积分10
16秒前
lin发布了新的文献求助10
17秒前
aero完成签到 ,获得积分10
19秒前
123号完成签到,获得积分10
21秒前
充电宝应助TT采纳,获得10
23秒前
24秒前
24秒前
英姑应助荒野星辰采纳,获得10
26秒前
26秒前
YHY完成签到,获得积分10
28秒前
科研通AI5应助魏伯安采纳,获得10
28秒前
caoyy发布了新的文献求助10
28秒前
29秒前
30秒前
张喻235532完成签到,获得积分10
31秒前
失眠虔纹发布了新的文献求助10
32秒前
香蕉觅云应助糊涂的小伙采纳,获得10
32秒前
32秒前
sutharsons应助科研通管家采纳,获得200
34秒前
打打应助科研通管家采纳,获得10
34秒前
axin应助科研通管家采纳,获得10
34秒前
丘比特应助科研通管家采纳,获得10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849