Continual learning fault diagnosis: A dual-branch adaptive aggregation residual network for fault diagnosis with machine increments

断层(地质) 遗忘 计算机科学 残余物 人工智能 理论(学习稳定性) 机器学习 算法 语言学 地质学 哲学 地震学
作者
Bojian Chen,Changqing Shen,Juanjuan Shi,Lin Kong,Luyang Tan,Dong Wang,Zhongkui Zhu
出处
期刊:Chinese Journal of Aeronautics [Elsevier]
卷期号:36 (6): 361-377 被引量:23
标识
DOI:10.1016/j.cja.2022.08.019
摘要

As a data-driven approach, deep learning (DL)-based fault diagnosis methods need to collect the relatively comprehensive data on machine fault types to achieve satisfactory performance. A mechanical system may include multiple submachines in the real-world. During condition monitoring of a mechanical system, fault data are distributed in a continuous flow of constantly generated information and new faults will inevitably occur in unconsidered submachines, which are also called machine increments. Therefore, adequately collecting fault data in advance is difficult. Limited by the characteristics of DL, training existing models directly with new fault data of new submachines leads to catastrophic forgetting of old tasks, while the cost of collecting all known data to retrain the models is excessively high. DL-based fault diagnosis methods cannot learn continually and adaptively in dynamic environments. A new continual learning fault diagnosis method (CLFD) is proposed in this paper to solve a series of fault diagnosis tasks with machine increments. The stability–plasticity dilemma is an intrinsic issue in continual learning. The core of CLFD is the proposed dual-branch adaptive aggregation residual network (DAARN). Two types of residual blocks are created in each block layer of DAARN: steady and dynamic blocks. The stability–plasticity dilemma is solved by assigning them with adaptive aggregation weights to balance stability and plasticity, and a bi-level optimization program is used to optimize adaptive aggregation weights and model parameters. In addition, a feature-level knowledge distillation loss function is proposed to further overcome catastrophic forgetting. CLFD is then applied to the fault diagnosis case with machine increments. Results demonstrate that CLFD outperforms other continual learning methods and has satisfactory robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI2S应助yzm788695采纳,获得30
6秒前
7秒前
wy完成签到,获得积分20
9秒前
动听心锁完成签到,获得积分10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
小谢发布了新的文献求助10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
萧水白应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
10秒前
大模型应助科研通管家采纳,获得10
10秒前
贺知书发布了新的文献求助10
11秒前
ggg发布了新的文献求助10
11秒前
mlzmlz完成签到,获得积分10
12秒前
张益达发布了新的文献求助10
12秒前
12秒前
蓝桉完成签到,获得积分20
14秒前
15秒前
酷酷薯片发布了新的文献求助10
15秒前
15秒前
动听心锁发布了新的文献求助10
15秒前
17秒前
情怀应助bwbw采纳,获得10
17秒前
Theo完成签到 ,获得积分10
18秒前
夏夏完成签到 ,获得积分10
19秒前
归于水云身完成签到 ,获得积分10
19秒前
Laura完成签到,获得积分10
19秒前
20秒前
心悦臣服发布了新的文献求助10
20秒前
20秒前
tyhmugua发布了新的文献求助10
21秒前
FashionBoy应助姚宇欣采纳,获得10
21秒前
21秒前
Hello应助心灵美的毛巾采纳,获得10
21秒前
dawei完成签到 ,获得积分10
21秒前
22秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309669
求助须知:如何正确求助?哪些是违规求助? 2942933
关于积分的说明 8511870
捐赠科研通 2618027
什么是DOI,文献DOI怎么找? 1430770
科研通“疑难数据库(出版商)”最低求助积分说明 664273
邀请新用户注册赠送积分活动 649451