已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Continual learning fault diagnosis: A dual-branch adaptive aggregation residual network for fault diagnosis with machine increments

断层(地质) 遗忘 计算机科学 残余物 人工智能 理论(学习稳定性) 机器学习 算法 语言学 地质学 哲学 地震学
作者
Bojian Chen,Changqing Shen,Juanjuan Shi,Lin Kong,Luyang Tan,Dong Wang,Zhongkui Zhu
出处
期刊:Chinese Journal of Aeronautics [Elsevier BV]
卷期号:36 (6): 361-377 被引量:25
标识
DOI:10.1016/j.cja.2022.08.019
摘要

As a data-driven approach, deep learning (DL)-based fault diagnosis methods need to collect the relatively comprehensive data on machine fault types to achieve satisfactory performance. A mechanical system may include multiple submachines in the real-world. During condition monitoring of a mechanical system, fault data are distributed in a continuous flow of constantly generated information and new faults will inevitably occur in unconsidered submachines, which are also called machine increments. Therefore, adequately collecting fault data in advance is difficult. Limited by the characteristics of DL, training existing models directly with new fault data of new submachines leads to catastrophic forgetting of old tasks, while the cost of collecting all known data to retrain the models is excessively high. DL-based fault diagnosis methods cannot learn continually and adaptively in dynamic environments. A new continual learning fault diagnosis method (CLFD) is proposed in this paper to solve a series of fault diagnosis tasks with machine increments. The stability–plasticity dilemma is an intrinsic issue in continual learning. The core of CLFD is the proposed dual-branch adaptive aggregation residual network (DAARN). Two types of residual blocks are created in each block layer of DAARN: steady and dynamic blocks. The stability–plasticity dilemma is solved by assigning them with adaptive aggregation weights to balance stability and plasticity, and a bi-level optimization program is used to optimize adaptive aggregation weights and model parameters. In addition, a feature-level knowledge distillation loss function is proposed to further overcome catastrophic forgetting. CLFD is then applied to the fault diagnosis case with machine increments. Results demonstrate that CLFD outperforms other continual learning methods and has satisfactory robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
下午好完成签到 ,获得积分10
1秒前
Linda完成签到 ,获得积分10
1秒前
苗条世德发布了新的文献求助10
2秒前
Y先生完成签到,获得积分10
3秒前
3秒前
ZhaoPeng完成签到,获得积分0
4秒前
AXLL完成签到 ,获得积分10
5秒前
7秒前
小远完成签到,获得积分10
8秒前
10秒前
123发布了新的文献求助10
10秒前
没有昵称发布了新的文献求助10
10秒前
大气的以寒完成签到,获得积分10
12秒前
彭于晏应助duobao鱼采纳,获得10
12秒前
小远发布了新的文献求助10
15秒前
肉肉完成签到 ,获得积分10
15秒前
liuqi完成签到 ,获得积分10
15秒前
852应助123采纳,获得10
21秒前
BEYOND啊完成签到 ,获得积分10
23秒前
sugarballer完成签到 ,获得积分10
23秒前
liming_li完成签到,获得积分10
23秒前
发C刊的人完成签到 ,获得积分10
24秒前
SCI完成签到 ,获得积分10
25秒前
xuxuxuxuxu完成签到 ,获得积分10
26秒前
ZM完成签到 ,获得积分10
28秒前
打打应助zhou采纳,获得10
29秒前
苗条世德完成签到,获得积分10
29秒前
噜噜晓完成签到 ,获得积分10
29秒前
29秒前
有川洋一完成签到 ,获得积分10
31秒前
泽灵完成签到,获得积分10
31秒前
cgsu完成签到,获得积分10
33秒前
Brain完成签到 ,获得积分10
33秒前
天天向上发布了新的文献求助10
33秒前
踏雪完成签到,获得积分10
34秒前
35秒前
Hiraeth完成签到 ,获得积分10
36秒前
summer木完成签到,获得积分20
36秒前
无zzz的人发布了新的文献求助10
36秒前
852应助拾柒采纳,获得10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959930
求助须知:如何正确求助?哪些是违规求助? 3506191
关于积分的说明 11128233
捐赠科研通 3238160
什么是DOI,文献DOI怎么找? 1789535
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803024