Decarbonising the automotive sector: a primary raw material perspective on targets and timescales

汽车工业 供应链 业务 第2层网络 电气化 产业组织 生产(经济) 第1层网络 工作(物理) 供求关系 持续时间(音乐) 环境经济学 经济 计算机科学 营销 工程类 万维网 宏观经济学 艺术 航空航天工程 互联网 文学类 微观经济学 机械工程 电信 电气工程
作者
Evi Petavratzi,Gus Gunn
出处
期刊:Mineral economics [Springer Science+Business Media]
卷期号:36 (4): 545-561 被引量:16
标识
DOI:10.1007/s13563-022-00334-2
摘要

Abstract Decarbonisation of the automotive sector will require increased amounts of raw materials such as lithium, cobalt, nickel and rare earth elements. Consequently, it is crucial to assess whether supply will be able to meet forecast demand within the required timescale. The automotive sector relies on complex global supply chains comprising four tiers. We have developed an integrated timeline from tier 4 (supply of raw materials) through to tier 1, the production of electric vehicles (EVs). Numerous factors, mainly economic, political, social and environmental, influence the duration of tier 4 leading to considerable variation between projects. However, our analysis demonstrates that it commonly takes more than 30 years from initial exploration to EV production. Tier 4, which is often neglected by the automotive industry, may account for 20 years of that period. This suggests that raw material supply is unlikely to match the projected demand from electrification of the automotive sector up to 2030. Reducing the duration of tier 4 will be difficult, although governments and industry can mitigate supply risks in various ways. These include multi-disciplinary international research across the supply chain and the transformation of research findings into policy and best practice. Supply chain convergence, with businesses across the supply chain working to develop long-term plans for secure and sustainable supply, will also be beneficial. In addition, global stakeholders should work together to resolve ESG challenges to supply. All these measures depend on the availability of researchers and industry personnel with appropriate skills and knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
木野狐发布了新的文献求助10
1秒前
老演员发布了新的文献求助10
2秒前
3秒前
xu发布了新的文献求助10
3秒前
5秒前
一只渣狗发布了新的文献求助10
6秒前
happiness完成签到 ,获得积分10
7秒前
7秒前
背后归尘完成签到,获得积分10
7秒前
Jasper应助zx采纳,获得10
8秒前
喜悦灵凡发布了新的文献求助30
8秒前
12秒前
12秒前
SYLH应助xu采纳,获得10
12秒前
12秒前
华仔应助木野狐采纳,获得10
14秒前
文献求助111完成签到,获得积分10
14秒前
菜鸟队长发布了新的文献求助10
15秒前
16秒前
17秒前
CodeCraft应助wxq采纳,获得10
19秒前
20秒前
22秒前
菜鸟队长完成签到,获得积分10
24秒前
Jamc1n发布了新的文献求助10
26秒前
26秒前
娜笔小熊发布了新的文献求助10
28秒前
29秒前
乐乐应助一棵狗芽采纳,获得10
29秒前
Crystal完成签到,获得积分10
30秒前
浩浩浩完成签到,获得积分10
30秒前
31秒前
ps2666完成签到 ,获得积分10
32秒前
32秒前
苏夏完成签到 ,获得积分10
34秒前
酷波er应助Jamc1n采纳,获得10
34秒前
Baekhyun完成签到,获得积分10
34秒前
陆鑫跃发布了新的文献求助10
36秒前
大力怜容完成签到 ,获得积分10
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734464
求助须知:如何正确求助?哪些是违规求助? 3278459
关于积分的说明 10009515
捐赠科研通 2995045
什么是DOI,文献DOI怎么找? 1643172
邀请新用户注册赠送积分活动 780986
科研通“疑难数据库(出版商)”最低求助积分说明 749183