Machine Learning Models Applied to a GNSS Sensor Network for Automated Bridge Anomaly Detection

全球导航卫星系统应用 异常检测 计算机科学 冗余(工程) 异常(物理) 实时计算 桥(图论) 全球定位系统 结构健康监测 数据挖掘 人工智能 工程类 电信 医学 物理 结构工程 内科学 凝聚态物理 操作系统
作者
Nicolas Manzini,André Orcesi,Christian Thom,Marc-Antoine Brossault,S. Botton,Miguel Ortiz,J. G. Dumoulin
出处
期刊:Journal of Structural Engineering-asce [American Society of Civil Engineers]
卷期号:148 (11) 被引量:6
标识
DOI:10.1061/(asce)st.1943-541x.0003469
摘要

Structural health monitoring (SHM) based on global navigation satellite systems (GNSS) is an interesting solution to provide absolute positions at different locations of a structure in a global reference frame. In particular, low-cost GNSS stations for large-scale bridge monitoring have gained increasing attention these last years because recent experiments showed the ability to achieve a subcentimeter accuracy for continuous monitoring with adequate combinations of antennas and receivers. Technical solutions now allow displacement monitoring of long bridges with a cost-effective deployment of GNSS sensing networks. In particular, the redundancy of observations within the GNSS network with various levels of correlations between the GNSS time series makes such monitoring solution a good candidate for anomaly detection based on machine learning models, using several predictive models for each sensor (based on environmental conditions, or other sensors as input data). This strategy is investigated in this paper based on GNSS time series, and an anomaly indicator is proposed to detect and locate anomalous structural behavior. The proposed concepts are applied to a cable-stayed bridge for illustration, and the comparison between multiple tools highlights recurrent neural networks (RNN) as an effective regression tool. Coupling this tool with the proposed anomaly detection strategy enables one to identify and localize both real and simulated anomalies in the considered data set.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
酷波er应助一独白采纳,获得30
4秒前
SzyAzns完成签到,获得积分10
5秒前
研友_VZG7GZ应助zzznznnn采纳,获得10
5秒前
DDDDD发布了新的文献求助10
5秒前
wowowww完成签到,获得积分20
6秒前
6秒前
sissiarno应助阿利呀采纳,获得20
8秒前
毅诚菌完成签到,获得积分10
8秒前
一三二五七完成签到 ,获得积分0
9秒前
大华完成签到,获得积分10
10秒前
10秒前
potato0mud完成签到 ,获得积分10
12秒前
GD发布了新的文献求助10
13秒前
13秒前
Praktika完成签到,获得积分10
15秒前
情怀应助乌梅不乌采纳,获得10
15秒前
万能图书馆应助乌梅不乌采纳,获得10
15秒前
李健应助乌梅不乌采纳,获得10
15秒前
16秒前
17秒前
19秒前
研一发布了新的文献求助10
20秒前
Jasper应助找文献采纳,获得10
20秒前
李志华完成签到,获得积分10
21秒前
香蕉觅云应助李嘉图采纳,获得10
21秒前
25秒前
机智采枫发布了新的文献求助30
25秒前
桐桐应助科研通管家采纳,获得10
26秒前
26秒前
CipherSage应助科研通管家采纳,获得10
26秒前
Ava应助科研通管家采纳,获得10
26秒前
搜集达人应助科研通管家采纳,获得10
26秒前
Hello应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
香蕉觅云应助科研通管家采纳,获得10
27秒前
CipherSage应助科研通管家采纳,获得10
27秒前
NexusExplorer应助科研通管家采纳,获得20
27秒前
大模型应助科研通管家采纳,获得10
27秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
Toward personalized care for insomnia in the US Army: a machine learning model to predict response to cognitive behavioral therapy for insomnia 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392477
求助须知:如何正确求助?哪些是违规求助? 3003086
关于积分的说明 8807533
捐赠科研通 2689819
什么是DOI,文献DOI怎么找? 1473318
科研通“疑难数据库(出版商)”最低求助积分说明 681547
邀请新用户注册赠送积分活动 674351