An unsupervised framework for extracting multilane roads from OpenStreetMap

制图综合 多边形(计算机图形学) 计算机科学 聚类分析 一般化 集合(抽象数据类型) 数据挖掘 人工智能 模式识别(心理学) 地理 数学 电信 帧(网络) 数学分析 程序设计语言
作者
Kunkun Wu,Zhen Xie,Maosheng Hu
出处
期刊:International Journal of Geographical Information Science [Informa]
卷期号:36 (11): 2322-2344
标识
DOI:10.1080/13658816.2022.2107208
摘要

Multilane roads are a set of approximately parallel line segments representing the same road in large-scale vector maps. They must be extracted first in cartographic generalization. There are numerous multilane roads in the easily accessible OpenStreetMap (OSM) dataset. For this dataset, polygon-based methods have achieved state-of-the-art performance. However, traditional polygon-based methods usually rely on manually labeled data, which means they are time-consuming and labor-intensive. To address this problem, an unsupervised framework for extracting multilane roads is proposed in this study. Road segments were first grouped to form the road polygons. A set of shape descriptors was formulated to reduce the dimensions of individual road polygons into conceptual points. Next, dimensional shape descriptors were standardized using logarithmic standardization. The density peaks clustering (DPC) algorithm was employed to classify these points. Then, cluster tags were identified manually to recognize which clusters represent multilane polygons. Finally, post-processing learning from the concept of assimilation is proposed to fill holes and remove islands. Experiments were conducted to extract multilane roads with datasets from three cities: Wuhan, Beijing and Munich. The experimental results show that the proposed framework effectively extracted multilane roads without any labels with accuracy levels comparable to those of supervised methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
齐天完成签到 ,获得积分10
6秒前
7秒前
zzyh发布了新的文献求助30
7秒前
leotao完成签到,获得积分10
11秒前
AireenBeryl531应助zq123采纳,获得10
13秒前
小蘑菇应助zq123采纳,获得30
13秒前
完美世界应助zq123采纳,获得10
13秒前
在水一方应助zq123采纳,获得10
13秒前
那一年的河川完成签到,获得积分10
14秒前
LXZ完成签到,获得积分10
14秒前
14秒前
清秀不言完成签到 ,获得积分10
15秒前
15秒前
16秒前
Wcy发布了新的文献求助10
18秒前
18秒前
七个娃娃发布了新的文献求助10
20秒前
20秒前
宓觅波发布了新的文献求助10
22秒前
QxQMDR完成签到,获得积分10
23秒前
111完成签到,获得积分10
27秒前
标致山兰完成签到,获得积分20
30秒前
111发布了新的文献求助10
31秒前
wxl完成签到,获得积分20
32秒前
32秒前
33秒前
wxl发布了新的文献求助10
35秒前
辰扞发布了新的文献求助10
38秒前
badyoungboy关注了科研通微信公众号
38秒前
38秒前
青檀完成签到,获得积分20
39秒前
41秒前
青檀发布了新的文献求助10
42秒前
44秒前
小二郎应助wxl采纳,获得10
44秒前
寻雾启事完成签到,获得积分10
44秒前
46秒前
乱醉应助忧郁绝音采纳,获得10
47秒前
ccc完成签到,获得积分20
48秒前
Pxn1bplus发布了新的文献求助10
49秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240875
求助须知:如何正确求助?哪些是违规求助? 2885573
关于积分的说明 8239275
捐赠科研通 2554021
什么是DOI,文献DOI怎么找? 1382130
科研通“疑难数据库(出版商)”最低求助积分说明 649471
邀请新用户注册赠送积分活动 625097