亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An unsupervised framework for extracting multilane roads from OpenStreetMap

制图综合 多边形(计算机图形学) 计算机科学 聚类分析 一般化 集合(抽象数据类型) 数据挖掘 人工智能 模式识别(心理学) 地理 数学 电信 帧(网络) 数学分析 程序设计语言
作者
Kunkun Wu,Zhen Xie,Maosheng Hu
出处
期刊:International Journal of Geographical Information Science [Informa]
卷期号:36 (11): 2322-2344
标识
DOI:10.1080/13658816.2022.2107208
摘要

Multilane roads are a set of approximately parallel line segments representing the same road in large-scale vector maps. They must be extracted first in cartographic generalization. There are numerous multilane roads in the easily accessible OpenStreetMap (OSM) dataset. For this dataset, polygon-based methods have achieved state-of-the-art performance. However, traditional polygon-based methods usually rely on manually labeled data, which means they are time-consuming and labor-intensive. To address this problem, an unsupervised framework for extracting multilane roads is proposed in this study. Road segments were first grouped to form the road polygons. A set of shape descriptors was formulated to reduce the dimensions of individual road polygons into conceptual points. Next, dimensional shape descriptors were standardized using logarithmic standardization. The density peaks clustering (DPC) algorithm was employed to classify these points. Then, cluster tags were identified manually to recognize which clusters represent multilane polygons. Finally, post-processing learning from the concept of assimilation is proposed to fill holes and remove islands. Experiments were conducted to extract multilane roads with datasets from three cities: Wuhan, Beijing and Munich. The experimental results show that the proposed framework effectively extracted multilane roads without any labels with accuracy levels comparable to those of supervised methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
IIII发布了新的文献求助10
14秒前
17秒前
29秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
无花果应助科研通管家采纳,获得10
34秒前
无花果应助科研通管家采纳,获得10
34秒前
酷波er应助科研通管家采纳,获得10
35秒前
酷波er应助科研通管家采纳,获得10
35秒前
科研通AI6.1应助jy采纳,获得10
49秒前
50秒前
52秒前
畅快甜瓜发布了新的文献求助30
55秒前
IIII发布了新的文献求助10
59秒前
Criminology34应助zyw采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
jy发布了新的文献求助10
1分钟前
科研通AI6.1应助读书的时候采纳,获得150
1分钟前
Kypsi完成签到,获得积分10
1分钟前
1分钟前
rrrrry发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
今后应助科研通管家采纳,获得10
2分钟前
李爱国应助读书的时候采纳,获得10
2分钟前
2分钟前
畅快甜瓜发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
Ava应助畅快甜瓜采纳,获得30
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732235
求助须知:如何正确求助?哪些是违规求助? 5337592
关于积分的说明 15322064
捐赠科研通 4877886
什么是DOI,文献DOI怎么找? 2620721
邀请新用户注册赠送积分活动 1569955
关于科研通互助平台的介绍 1526556