An Efficient Gravitational Search Decision Forest Approach for Fingerprint Recognition

随机森林 指纹(计算) 计算机科学 决策树 人工智能 生物识别 机器学习 执法 NIST公司 指纹识别 数据挖掘 模式识别(心理学) 语音识别 政治学 法学
作者
Mahesh Kumar,Devender Kumar
出处
期刊:kuwait journal of science [Elsevier BV]
被引量:1
标识
DOI:10.48129/kjs.20635
摘要

Fingerprint based human identification is one of the authentic biometric recognition systems due to the permanence and uniqueness of the finger impressions. There is the extensive usage of fingerprint recognition in personalized electronic devices, security systems, banking, forensic labs, and especially in law enforcement agencies. Although the existing systems can recognize fingerprints, they lack in case of poor quality and latent fingerprints. The latent fingerprints are captured by law enforcement agencies during the crime scene to find the criminal. Consequently, it is essential to develop a novel system that can efficiently recognize both complete and latent fingerprints. The current work proposes an efficient Gravitational Search Decision Forest (GSDF) method, which is a combination of the gravitational search algorithm (GSA) and the random forest (RF) method. In the proposed GSDF approach, the mass agent of GSA determines the solution by constructing decision trees in accordance with the random forest hypothesis. The recognition of the fingerprints is accomplished by mass agents in the form of a final generated decision forest from the set of hypothesis space as the mass agents can create multiple hypotheses using random proportional rules. The experiments for fingerprint recognition are conducted for both the latent fingerprints (NIST SD27 dataset) and the complete fingerprints (FVC2004 dataset). The effectiveness of the proposed GSDF approach is analyzed by evaluating the results with machine learning classifiers (random forest, decision tree, back propagation neural networks, and k-nearest neighbor) as well. The comparative analysis of the proposed approach and incorporated machine learning classifiers indicates the outperformed performance of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助念姬采纳,获得10
1秒前
gggja完成签到,获得积分10
1秒前
2秒前
陈_Ccc发布了新的文献求助10
2秒前
黄启烽发布了新的文献求助10
4秒前
友好的妙松完成签到 ,获得积分10
5秒前
godblessyou发布了新的文献求助10
6秒前
Spirodelaz完成签到,获得积分10
7秒前
高路发布了新的文献求助10
7秒前
7秒前
7秒前
xulin完成签到 ,获得积分10
9秒前
yin完成签到,获得积分10
10秒前
10秒前
大胆的夏天完成签到,获得积分10
10秒前
风中的冰蓝完成签到,获得积分10
10秒前
余健完成签到,获得积分10
11秒前
11秒前
12秒前
萝卜发布了新的文献求助10
12秒前
mengguzai完成签到,获得积分10
12秒前
君君发布了新的文献求助10
12秒前
13秒前
godblessyou完成签到,获得积分10
13秒前
Farr完成签到,获得积分10
14秒前
成就的冰绿完成签到,获得积分10
15秒前
ZhJF发布了新的文献求助10
16秒前
牛牛眉目发布了新的文献求助10
17秒前
17秒前
圆圆完成签到,获得积分10
18秒前
666应助只吃煎饼不卷葱采纳,获得10
20秒前
20秒前
bunny发布了新的文献求助10
21秒前
Mayday完成签到,获得积分10
24秒前
N型半导体发布了新的文献求助10
24秒前
666应助阔落采纳,获得10
25秒前
开朗满天发布了新的文献求助10
26秒前
26秒前
29秒前
bkagyin应助岁月静好采纳,获得30
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388