亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Efficient Gravitational Search Decision Forest Approach for Fingerprint Recognition

随机森林 指纹(计算) 计算机科学 决策树 人工智能 生物识别 机器学习 执法 NIST公司 指纹识别 数据挖掘 模式识别(心理学) 语音识别 政治学 法学
作者
Mahesh Kumar,Devender Kumar
出处
期刊:kuwait journal of science [Kuwait Journal of Science]
被引量:1
标识
DOI:10.48129/kjs.20635
摘要

Fingerprint based human identification is one of the authentic biometric recognition systems due to the permanence and uniqueness of the finger impressions. There is the extensive usage of fingerprint recognition in personalized electronic devices, security systems, banking, forensic labs, and especially in law enforcement agencies. Although the existing systems can recognize fingerprints, they lack in case of poor quality and latent fingerprints. The latent fingerprints are captured by law enforcement agencies during the crime scene to find the criminal. Consequently, it is essential to develop a novel system that can efficiently recognize both complete and latent fingerprints. The current work proposes an efficient Gravitational Search Decision Forest (GSDF) method, which is a combination of the gravitational search algorithm (GSA) and the random forest (RF) method. In the proposed GSDF approach, the mass agent of GSA determines the solution by constructing decision trees in accordance with the random forest hypothesis. The recognition of the fingerprints is accomplished by mass agents in the form of a final generated decision forest from the set of hypothesis space as the mass agents can create multiple hypotheses using random proportional rules. The experiments for fingerprint recognition are conducted for both the latent fingerprints (NIST SD27 dataset) and the complete fingerprints (FVC2004 dataset). The effectiveness of the proposed GSDF approach is analyzed by evaluating the results with machine learning classifiers (random forest, decision tree, back propagation neural networks, and k-nearest neighbor) as well. The comparative analysis of the proposed approach and incorporated machine learning classifiers indicates the outperformed performance of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
47秒前
50秒前
50秒前
56秒前
乐洋洋发布了新的文献求助10
1分钟前
1分钟前
hank完成签到,获得积分10
1分钟前
sirius应助科研通管家采纳,获得10
1分钟前
LPH01发布了新的文献求助10
1分钟前
机智明辉完成签到,获得积分10
1分钟前
1分钟前
不安映秋发布了新的文献求助10
1分钟前
小将军完成签到,获得积分10
2分钟前
2分钟前
2分钟前
..发布了新的文献求助10
2分钟前
柏莉发布了新的文献求助10
2分钟前
Yaon-Xu完成签到,获得积分10
2分钟前
2分钟前
YUYUYU发布了新的文献求助10
2分钟前
2分钟前
充电宝应助Anna Jenna采纳,获得10
3分钟前
3分钟前
Anna Jenna发布了新的文献求助10
3分钟前
爆米花应助Anna Jenna采纳,获得10
3分钟前
薇笑不慌完成签到,获得积分10
3分钟前
爆米花应助dd19930403采纳,获得30
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
dd19930403发布了新的文献求助30
4分钟前
tian发布了新的文献求助10
4分钟前
menglanjun完成签到,获得积分10
4分钟前
minuxSCI完成签到,获得积分10
4分钟前
dd19930403完成签到 ,获得积分20
4分钟前
Benhnhk21完成签到,获得积分10
4分钟前
所所应助想昵称太难了采纳,获得10
5分钟前
球球球心完成签到,获得积分10
5分钟前
5分钟前
寻道图强应助menglanjun采纳,获得30
5分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142675
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806917
捐赠科研通 2449807
什么是DOI,文献DOI怎么找? 1303487
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601314