亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Efficient Gravitational Search Decision Forest Approach for Fingerprint Recognition

随机森林 指纹(计算) 计算机科学 决策树 人工智能 生物识别 机器学习 执法 NIST公司 指纹识别 数据挖掘 模式识别(心理学) 语音识别 政治学 法学
作者
Mahesh Kumar,Devender Kumar
出处
期刊:kuwait journal of science [Kuwait Journal of Science]
被引量:1
标识
DOI:10.48129/kjs.20635
摘要

Fingerprint based human identification is one of the authentic biometric recognition systems due to the permanence and uniqueness of the finger impressions. There is the extensive usage of fingerprint recognition in personalized electronic devices, security systems, banking, forensic labs, and especially in law enforcement agencies. Although the existing systems can recognize fingerprints, they lack in case of poor quality and latent fingerprints. The latent fingerprints are captured by law enforcement agencies during the crime scene to find the criminal. Consequently, it is essential to develop a novel system that can efficiently recognize both complete and latent fingerprints. The current work proposes an efficient Gravitational Search Decision Forest (GSDF) method, which is a combination of the gravitational search algorithm (GSA) and the random forest (RF) method. In the proposed GSDF approach, the mass agent of GSA determines the solution by constructing decision trees in accordance with the random forest hypothesis. The recognition of the fingerprints is accomplished by mass agents in the form of a final generated decision forest from the set of hypothesis space as the mass agents can create multiple hypotheses using random proportional rules. The experiments for fingerprint recognition are conducted for both the latent fingerprints (NIST SD27 dataset) and the complete fingerprints (FVC2004 dataset). The effectiveness of the proposed GSDF approach is analyzed by evaluating the results with machine learning classifiers (random forest, decision tree, back propagation neural networks, and k-nearest neighbor) as well. The comparative analysis of the proposed approach and incorporated machine learning classifiers indicates the outperformed performance of the proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sssss完成签到,获得积分10
刚刚
4秒前
55秒前
57秒前
1分钟前
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
汉堡包应助桃子e采纳,获得10
1分钟前
1分钟前
桃子e发布了新的文献求助10
1分钟前
伊伊伊伊一一一完成签到,获得积分10
1分钟前
ding应助scn666采纳,获得10
1分钟前
思源应助桃子e采纳,获得10
2分钟前
欣喜的香菱完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
桃子e发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
难过忆山发布了新的文献求助10
3分钟前
英姑应助Zz采纳,获得10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
hq完成签到 ,获得积分10
3分钟前
3分钟前
poki完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
充电宝应助科研通管家采纳,获得10
5分钟前
5分钟前
天天快乐应助Fluoxtine采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
twk发布了新的文献求助10
5分钟前
6分钟前
研友_VZG7GZ应助粗暴的坤采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788708
求助须知:如何正确求助?哪些是违规求助? 5710788
关于积分的说明 15473823
捐赠科研通 4916686
什么是DOI,文献DOI怎么找? 2646520
邀请新用户注册赠送积分活动 1594203
关于科研通互助平台的介绍 1548617