亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Efficient Gravitational Search Decision Forest Approach for Fingerprint Recognition

随机森林 指纹(计算) 计算机科学 决策树 人工智能 生物识别 机器学习 执法 NIST公司 指纹识别 数据挖掘 模式识别(心理学) 语音识别 政治学 法学
作者
Mahesh Kumar,Devender Kumar
出处
期刊:kuwait journal of science [Elsevier BV]
被引量:1
标识
DOI:10.48129/kjs.20635
摘要

Fingerprint based human identification is one of the authentic biometric recognition systems due to the permanence and uniqueness of the finger impressions. There is the extensive usage of fingerprint recognition in personalized electronic devices, security systems, banking, forensic labs, and especially in law enforcement agencies. Although the existing systems can recognize fingerprints, they lack in case of poor quality and latent fingerprints. The latent fingerprints are captured by law enforcement agencies during the crime scene to find the criminal. Consequently, it is essential to develop a novel system that can efficiently recognize both complete and latent fingerprints. The current work proposes an efficient Gravitational Search Decision Forest (GSDF) method, which is a combination of the gravitational search algorithm (GSA) and the random forest (RF) method. In the proposed GSDF approach, the mass agent of GSA determines the solution by constructing decision trees in accordance with the random forest hypothesis. The recognition of the fingerprints is accomplished by mass agents in the form of a final generated decision forest from the set of hypothesis space as the mass agents can create multiple hypotheses using random proportional rules. The experiments for fingerprint recognition are conducted for both the latent fingerprints (NIST SD27 dataset) and the complete fingerprints (FVC2004 dataset). The effectiveness of the proposed GSDF approach is analyzed by evaluating the results with machine learning classifiers (random forest, decision tree, back propagation neural networks, and k-nearest neighbor) as well. The comparative analysis of the proposed approach and incorporated machine learning classifiers indicates the outperformed performance of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助无心烛采纳,获得10
12秒前
研友_892kOL完成签到,获得积分0
1分钟前
1分钟前
1分钟前
无心烛发布了新的文献求助10
1分钟前
研友_VZG7GZ应助无心烛采纳,获得10
1分钟前
Ava应助南芜山为伴采纳,获得10
1分钟前
2分钟前
2分钟前
南芜山为伴完成签到,获得积分10
2分钟前
2分钟前
kuoping完成签到,获得积分0
2分钟前
7788完成签到,获得积分10
2分钟前
无心烛发布了新的文献求助10
2分钟前
2分钟前
aiiLnT发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
aiiLnT完成签到,获得积分10
2分钟前
2分钟前
香蕉觅云应助无心烛采纳,获得30
2分钟前
3分钟前
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
4分钟前
华仔应助liang采纳,获得10
4分钟前
小zz完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
liang发布了新的文献求助10
4分钟前
情怀应助liang采纳,获得10
4分钟前
Kevin完成签到,获得积分10
5分钟前
5分钟前
无心烛发布了新的文献求助30
5分钟前
Fortune完成签到,获得积分10
5分钟前
5分钟前
走啊走应助科研通管家采纳,获得10
5分钟前
走啊走应助科研通管家采纳,获得10
5分钟前
5分钟前
科研通AI5应助无心烛采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5161591
求助须知:如何正确求助?哪些是违规求助? 4355017
关于积分的说明 13559148
捐赠科研通 4199756
什么是DOI,文献DOI怎么找? 2303281
邀请新用户注册赠送积分活动 1303289
关于科研通互助平台的介绍 1249159