An Efficient Gravitational Search Decision Forest Approach for Fingerprint Recognition

随机森林 指纹(计算) 计算机科学 决策树 人工智能 生物识别 机器学习 执法 NIST公司 指纹识别 数据挖掘 模式识别(心理学) 语音识别 政治学 法学
作者
Mahesh Kumar,Devender Kumar
出处
期刊:kuwait journal of science [Kuwait Journal of Science]
被引量:1
标识
DOI:10.48129/kjs.20635
摘要

Fingerprint based human identification is one of the authentic biometric recognition systems due to the permanence and uniqueness of the finger impressions. There is the extensive usage of fingerprint recognition in personalized electronic devices, security systems, banking, forensic labs, and especially in law enforcement agencies. Although the existing systems can recognize fingerprints, they lack in case of poor quality and latent fingerprints. The latent fingerprints are captured by law enforcement agencies during the crime scene to find the criminal. Consequently, it is essential to develop a novel system that can efficiently recognize both complete and latent fingerprints. The current work proposes an efficient Gravitational Search Decision Forest (GSDF) method, which is a combination of the gravitational search algorithm (GSA) and the random forest (RF) method. In the proposed GSDF approach, the mass agent of GSA determines the solution by constructing decision trees in accordance with the random forest hypothesis. The recognition of the fingerprints is accomplished by mass agents in the form of a final generated decision forest from the set of hypothesis space as the mass agents can create multiple hypotheses using random proportional rules. The experiments for fingerprint recognition are conducted for both the latent fingerprints (NIST SD27 dataset) and the complete fingerprints (FVC2004 dataset). The effectiveness of the proposed GSDF approach is analyzed by evaluating the results with machine learning classifiers (random forest, decision tree, back propagation neural networks, and k-nearest neighbor) as well. The comparative analysis of the proposed approach and incorporated machine learning classifiers indicates the outperformed performance of the proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mm发布了新的文献求助10
刚刚
Gyr060307发布了新的文献求助20
刚刚
DDd发布了新的文献求助10
1秒前
1秒前
科研通AI6.1应助小北采纳,获得10
2秒前
fang20130608发布了新的文献求助10
3秒前
Vanity完成签到 ,获得积分10
3秒前
正直凌文发布了新的文献求助10
5秒前
makimaki发布了新的文献求助30
6秒前
6秒前
在水一方应助ye采纳,获得10
7秒前
Vanity关注了科研通微信公众号
7秒前
量子星尘发布了新的文献求助10
7秒前
Forty发布了新的文献求助10
8秒前
mrli747完成签到,获得积分10
9秒前
9秒前
所所应助Sophia采纳,获得10
9秒前
10秒前
东郭凝蝶发布了新的文献求助80
10秒前
10秒前
袁大头发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
qingli应助slx采纳,获得10
12秒前
共享精神应助天雨流芳采纳,获得10
12秒前
李美兰完成签到 ,获得积分10
13秒前
风趣飞柏应助khawla采纳,获得10
13秒前
亚特兰蒂斯应助Tonny采纳,获得10
14秒前
李名卿发布了新的文献求助10
14秒前
14秒前
英姑应助TZT采纳,获得10
14秒前
高钟宇发布了新的文献求助10
14秒前
真金小子发布了新的文献求助10
14秒前
KirstinSmoler发布了新的文献求助10
15秒前
15秒前
15秒前
17秒前
18秒前
风言完成签到,获得积分10
18秒前
隐形曼青应助可乐采纳,获得20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770876
求助须知:如何正确求助?哪些是违规求助? 5588215
关于积分的说明 15425761
捐赠科研通 4904256
什么是DOI,文献DOI怎么找? 2638647
邀请新用户注册赠送积分活动 1586521
关于科研通互助平台的介绍 1541641