Time-Series Analysis and Prediction of Surface Deformation in the Jinchuan Mining Area, Gansu Province, by Using InSAR and CNN–PhLSTM Network

干涉合成孔径雷达 计算机科学 卷积神经网络 时间序列 变形(气象学) 人工智能 合成孔径雷达 支持向量机 系列(地层学) 数据挖掘 地质学 模式识别(心理学) 遥感 机器学习 古生物学 海洋学
作者
Yi He,Haowen Yan,Yang Wang,Sheng Yao,Lifeng Zhang,Yi Chen,Tao Liu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 6732-6751 被引量:21
标识
DOI:10.1109/jstars.2022.3198728
摘要

Surface deformation poses a great threat to the safety of Jinchuan mining area production activities. At present, the spatio-temporal evolution law and mechanism of surface deformation in the Jinchuan mining area are unclear, and it is difficult to obtain reliable prediction results using the existing spatio-temporal prediction methods due to the lack of model parameters or relevant data. To solve these problems, this study proposes a new unified convolutional neural network with peephole long short-term memory (CNN-PhLSTM). Small baseline subset interferometric synthetic aperture radar (SBAS-InSAR) technology was used to obtain the spatio-temporal evolution characteristics of surface deformation in the period of 2014–2021. Time series InSAR deformation data are merged into a unified network model in series with a time-distributed CNN segmentation and stacked PhLSTM. The InSAR measurement results are shown to be reliable by comparison and verification with the benchmark and InSAR results of different orbits. The proposed CNN-PhLSTM model was evaluated by mean absolute error and structural similarity (SSIM) evaluation indexes, and was compared with support vector regression (SVR), multilayer perceptron (MLP) and CNN-LSTM models. The results show three continuous subsidence areas, namely the Longshou, second western and third eastern mining areas. The cumulative surface deformation continued to increase from 2014 to 2021. Faults and lithology control the spatial distribution of surface deformation in the Jinchuan mining area. The prediction results demonstrate that the surface deformation range will continue to expand and that time-series surface deformation will show a slow deceleration trend in the next two years.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
淡淡的新之完成签到,获得积分10
4秒前
OnMyWorldside发布了新的文献求助10
4秒前
竞风发布了新的文献求助10
4秒前
周六完成签到,获得积分10
4秒前
6秒前
ycj完成签到,获得积分10
7秒前
7秒前
8秒前
iNk应助笑点低蜜蜂采纳,获得20
9秒前
小鱼完成签到,获得积分10
10秒前
LXM发布了新的文献求助10
12秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
starofjlu应助科研通管家采纳,获得30
13秒前
Akim应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
云中应助科研通管家采纳,获得10
13秒前
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得30
13秒前
13秒前
Giirunnermoo完成签到,获得积分10
14秒前
domkps完成签到 ,获得积分10
14秒前
15秒前
15秒前
16秒前
oldsix完成签到,获得积分10
17秒前
haiwei完成签到 ,获得积分10
18秒前
虚心咖啡完成签到,获得积分10
18秒前
充电宝应助理想三寻采纳,获得30
19秒前
Gustavo发布了新的文献求助10
19秒前
DreamMaker完成签到,获得积分10
19秒前
20秒前
bilibala发布了新的文献求助30
21秒前
21秒前
小杜老师完成签到,获得积分10
23秒前
优秀醉易完成签到,获得积分10
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159888
求助须知:如何正确求助?哪些是违规求助? 2810893
关于积分的说明 7889801
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630761
版权声明 602012