Time-Series Analysis and Prediction of Surface Deformation in the Jinchuan Mining Area, Gansu Province, by Using InSAR and CNN–PhLSTM Network

干涉合成孔径雷达 计算机科学 卷积神经网络 时间序列 变形(气象学) 人工智能 合成孔径雷达 支持向量机 系列(地层学) 数据挖掘 地质学 模式识别(心理学) 遥感 机器学习 古生物学 海洋学
作者
Yi He,Haowen Yan,Yang Wang,Sheng Yao,Lifeng Zhang,Yi Chen,Tao Liu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 6732-6751 被引量:21
标识
DOI:10.1109/jstars.2022.3198728
摘要

Surface deformation poses a great threat to the safety of Jinchuan mining area production activities. At present, the spatio-temporal evolution law and mechanism of surface deformation in the Jinchuan mining area are unclear, and it is difficult to obtain reliable prediction results using the existing spatio-temporal prediction methods due to the lack of model parameters or relevant data. To solve these problems, this study proposes a new unified convolutional neural network with peephole long short-term memory (CNN-PhLSTM). Small baseline subset interferometric synthetic aperture radar (SBAS-InSAR) technology was used to obtain the spatio-temporal evolution characteristics of surface deformation in the period of 2014–2021. Time series InSAR deformation data are merged into a unified network model in series with a time-distributed CNN segmentation and stacked PhLSTM. The InSAR measurement results are shown to be reliable by comparison and verification with the benchmark and InSAR results of different orbits. The proposed CNN-PhLSTM model was evaluated by mean absolute error and structural similarity (SSIM) evaluation indexes, and was compared with support vector regression (SVR), multilayer perceptron (MLP) and CNN-LSTM models. The results show three continuous subsidence areas, namely the Longshou, second western and third eastern mining areas. The cumulative surface deformation continued to increase from 2014 to 2021. Faults and lithology control the spatial distribution of surface deformation in the Jinchuan mining area. The prediction results demonstrate that the surface deformation range will continue to expand and that time-series surface deformation will show a slow deceleration trend in the next two years.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lm发布了新的文献求助10
1秒前
无所归兮应助曲艺采纳,获得10
2秒前
2秒前
yar应助alone采纳,获得30
3秒前
za==应助小赵采纳,获得10
3秒前
4秒前
豆芽发布了新的文献求助10
4秒前
oky发布了新的文献求助10
4秒前
wdy111应助迷路硬币采纳,获得20
6秒前
6秒前
7秒前
艺高人胆大鸡腿完成签到 ,获得积分10
10秒前
乐乐应助焦糖采纳,获得10
10秒前
科研通AI2S应助nalan采纳,获得10
11秒前
静_完成签到 ,获得积分10
11秒前
11秒前
雪白元蝶发布了新的文献求助10
12秒前
12秒前
12秒前
留白完成签到 ,获得积分10
13秒前
共享精神应助小圆采纳,获得10
13秒前
13秒前
慕青应助梵高的向日葵采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得20
13秒前
czh应助科研通管家采纳,获得10
13秒前
13秒前
ding应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
14秒前
14秒前
彭于彦祖应助科研通管家采纳,获得10
14秒前
彭于彦祖应助科研通管家采纳,获得30
14秒前
雯雯完成签到,获得积分10
14秒前
14秒前
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
ED应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Economic Geography and Public Policy 900
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988786
求助须知:如何正确求助?哪些是违规求助? 3531116
关于积分的说明 11252493
捐赠科研通 3269766
什么是DOI,文献DOI怎么找? 1804771
邀请新用户注册赠送积分活动 881870
科研通“疑难数据库(出版商)”最低求助积分说明 809021