清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Knowledge graph construction based on ship collision accident reports to improve maritime traffic safety

元数据 计算机科学 碰撞 本体论 图形 情报检索 事故(哲学) 过程(计算) 背景(考古学) 数据挖掘 计算机安全 万维网 地理 理论计算机科学 认识论 操作系统 哲学 考古
作者
Langxiong Gan,Beiyan Ye,Zhiqiu Huang,Yi Xu,Qiaohong Chen,Yaqing Shu
出处
期刊:Ocean & Coastal Management [Elsevier]
卷期号:240: 106660-106660 被引量:81
标识
DOI:10.1016/j.ocecoaman.2023.106660
摘要

As an important data source, marine accident investigation reports are frequently used for accident analysis. However, it is hard to extract effective information since key knowledge is normally hidden in large blocks of text. In most cases, the collection of accident-related data is done manually. In this paper, a new knowledge graph construction approach to explore ship collision accidents is proposed, aiming to show the correlation among important factors of the accidents. In this research, 241 investigation reports on ship collision accidents from 2018 to 2021 published on the official website of the China Maritime Safety Administration (CMSA) were collected and analyzed. Then, the ship collision accident ontology module is constructed. According to the ontology information in the accident reports, entities were divided into context-based metadata and content-based metadata, which were used for describing different types of data. To extract the information for the accident report with semi-structured data, an information extraction module based on ontology was proposed. In this process, natural language processing (NLP) was used to obtain text information about the ontology. On this basis, the Ship Collision Accident Knowledge Graph (SCAKG) including 910 entity nodes and 1920 relation edges was constructed and stored in the graph database Neo4j. Finally, two case retrievals were conducted using the SCAKG to show the potential utilization of the method. The results show the effectiveness of the proposed approach in terms of discovering the internal relationship of the accident and could be used to expedite the judicial process, which simplifies the process of marine accident investigation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛卡巴卡爱吃饭完成签到 ,获得积分10
19秒前
BowieHuang应助科研通管家采纳,获得10
52秒前
1分钟前
MTF完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
赘婿应助moonsea0415采纳,获得10
1分钟前
任性的紫翠完成签到,获得积分10
2分钟前
活泼雪碧完成签到 ,获得积分10
2分钟前
2分钟前
moonsea0415发布了新的文献求助10
2分钟前
moonsea0415完成签到,获得积分10
2分钟前
Joins_Su完成签到 ,获得积分10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
3分钟前
Kevin发布了新的文献求助10
3分钟前
大个应助紧张的铃铛采纳,获得10
3分钟前
3分钟前
尤里有气发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
zakaria完成签到,获得积分10
3分钟前
紧张的铃铛完成签到,获得积分10
3分钟前
科研通AI6应助紧张的铃铛采纳,获得80
4分钟前
merrylake完成签到 ,获得积分10
4分钟前
4分钟前
Akim应助重庆森林采纳,获得30
4分钟前
5分钟前
5分钟前
5分钟前
重庆森林发布了新的文献求助30
5分钟前
邢夏之完成签到 ,获得积分0
5分钟前
重庆森林完成签到,获得积分10
5分钟前
6分钟前
PeterLin完成签到,获得积分10
6分钟前
科研通AI6应助PeterLin采纳,获得10
6分钟前
Asofi完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590568
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633472
什么是DOI,文献DOI怎么找? 2532825
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468723