清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Knowledge graph construction based on ship collision accident reports to improve maritime traffic safety

元数据 计算机科学 碰撞 本体论 图形 情报检索 事故(哲学) 过程(计算) 背景(考古学) 数据挖掘 计算机安全 万维网 地理 理论计算机科学 认识论 操作系统 哲学 考古
作者
Langxiong Gan,Beiyan Ye,Zhiqiu Huang,Yi Xu,Qiaohong Chen,Yaqing Shu
出处
期刊:Ocean & Coastal Management [Elsevier]
卷期号:240: 106660-106660 被引量:81
标识
DOI:10.1016/j.ocecoaman.2023.106660
摘要

As an important data source, marine accident investigation reports are frequently used for accident analysis. However, it is hard to extract effective information since key knowledge is normally hidden in large blocks of text. In most cases, the collection of accident-related data is done manually. In this paper, a new knowledge graph construction approach to explore ship collision accidents is proposed, aiming to show the correlation among important factors of the accidents. In this research, 241 investigation reports on ship collision accidents from 2018 to 2021 published on the official website of the China Maritime Safety Administration (CMSA) were collected and analyzed. Then, the ship collision accident ontology module is constructed. According to the ontology information in the accident reports, entities were divided into context-based metadata and content-based metadata, which were used for describing different types of data. To extract the information for the accident report with semi-structured data, an information extraction module based on ontology was proposed. In this process, natural language processing (NLP) was used to obtain text information about the ontology. On this basis, the Ship Collision Accident Knowledge Graph (SCAKG) including 910 entity nodes and 1920 relation edges was constructed and stored in the graph database Neo4j. Finally, two case retrievals were conducted using the SCAKG to show the potential utilization of the method. The results show the effectiveness of the proposed approach in terms of discovering the internal relationship of the accident and could be used to expedite the judicial process, which simplifies the process of marine accident investigation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
www发布了新的文献求助10
5秒前
dx完成签到,获得积分10
7秒前
合不着完成签到 ,获得积分10
9秒前
10秒前
小星星完成签到 ,获得积分10
10秒前
debu9完成签到,获得积分10
12秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
19秒前
20秒前
赘婿应助行走的猫采纳,获得10
26秒前
29秒前
30秒前
31秒前
爆炒鱼丸发布了新的文献求助10
34秒前
35秒前
40秒前
求学完成签到,获得积分10
40秒前
sweet雪儿妞妞完成签到 ,获得积分10
47秒前
49秒前
zj完成签到 ,获得积分10
49秒前
57秒前
火星上的雨柏完成签到 ,获得积分10
58秒前
Lina完成签到 ,获得积分10
1分钟前
jlwang完成签到,获得积分10
1分钟前
眯眯眼的安雁完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
西瓜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
搜集达人应助bailubailing采纳,获得10
1分钟前
圈地自萌X发布了新的文献求助10
1分钟前
1分钟前
不信人间有白头完成签到 ,获得积分10
1分钟前
行走的猫发布了新的文献求助30
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715238
求助须知:如何正确求助?哪些是违规求助? 5232546
关于积分的说明 15274237
捐赠科研通 4866222
什么是DOI,文献DOI怎么找? 2612798
邀请新用户注册赠送积分活动 1562966
关于科研通互助平台的介绍 1520352