Knowledge graph construction based on ship collision accident reports to improve maritime traffic safety

元数据 计算机科学 碰撞 本体论 图形 情报检索 事故(哲学) 过程(计算) 背景(考古学) 数据挖掘 计算机安全 万维网 地理 理论计算机科学 认识论 操作系统 哲学 考古
作者
Langxiong Gan,Beiyan Ye,Zhiqiu Huang,Yi Xu,Qiaohong Chen,Yaqing Shu
出处
期刊:Ocean & Coastal Management [Elsevier BV]
卷期号:240: 106660-106660 被引量:81
标识
DOI:10.1016/j.ocecoaman.2023.106660
摘要

As an important data source, marine accident investigation reports are frequently used for accident analysis. However, it is hard to extract effective information since key knowledge is normally hidden in large blocks of text. In most cases, the collection of accident-related data is done manually. In this paper, a new knowledge graph construction approach to explore ship collision accidents is proposed, aiming to show the correlation among important factors of the accidents. In this research, 241 investigation reports on ship collision accidents from 2018 to 2021 published on the official website of the China Maritime Safety Administration (CMSA) were collected and analyzed. Then, the ship collision accident ontology module is constructed. According to the ontology information in the accident reports, entities were divided into context-based metadata and content-based metadata, which were used for describing different types of data. To extract the information for the accident report with semi-structured data, an information extraction module based on ontology was proposed. In this process, natural language processing (NLP) was used to obtain text information about the ontology. On this basis, the Ship Collision Accident Knowledge Graph (SCAKG) including 910 entity nodes and 1920 relation edges was constructed and stored in the graph database Neo4j. Finally, two case retrievals were conducted using the SCAKG to show the potential utilization of the method. The results show the effectiveness of the proposed approach in terms of discovering the internal relationship of the accident and could be used to expedite the judicial process, which simplifies the process of marine accident investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助十字花科采纳,获得10
1秒前
1秒前
百忠发布了新的文献求助10
1秒前
MM完成签到,获得积分10
1秒前
万惜文完成签到,获得积分10
1秒前
2秒前
2秒前
Jacky发布了新的文献求助10
2秒前
3秒前
外向的聪展完成签到,获得积分10
3秒前
summer完成签到,获得积分10
3秒前
机灵的海蓝完成签到,获得积分10
3秒前
5秒前
5秒前
Lucas应助大憨憨采纳,获得10
6秒前
fengyi2999完成签到,获得积分10
6秒前
6秒前
chen123完成签到,获得积分10
6秒前
慕青应助fisheepyy采纳,获得10
6秒前
Tourist应助Renesmee采纳,获得10
7秒前
棋士应助小檗碱采纳,获得10
7秒前
乐乐应助青野采纳,获得10
7秒前
8秒前
8秒前
斯文败类应助sky采纳,获得10
8秒前
8秒前
8秒前
嗯哼完成签到,获得积分10
8秒前
一夜秋风花尽落完成签到,获得积分10
8秒前
8秒前
Master_Ye发布了新的文献求助10
8秒前
春风得意完成签到,获得积分10
9秒前
会飞的鱼发布了新的文献求助10
9秒前
搜集达人应助Otto Curious采纳,获得20
9秒前
Domi0712发布了新的文献求助10
10秒前
zrj完成签到 ,获得积分10
10秒前
哇哇哇哇我应助wjw采纳,获得10
11秒前
11秒前
Sandy应助啊啊啊啊啊啊啊采纳,获得20
11秒前
充电宝应助安静的忆文采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950635
求助须知:如何正确求助?哪些是违规求助? 3495998
关于积分的说明 11080354
捐赠科研通 3226418
什么是DOI,文献DOI怎么找? 1783846
邀请新用户注册赠送积分活动 867937
科研通“疑难数据库(出版商)”最低求助积分说明 800978