Knowledge graph construction based on ship collision accident reports to improve maritime traffic safety

元数据 计算机科学 碰撞 本体论 图形 情报检索 事故(哲学) 过程(计算) 背景(考古学) 数据挖掘 计算机安全 万维网 地理 理论计算机科学 认识论 操作系统 哲学 考古
作者
Gan Liu,B.Q. Ye,Zhiqiu Huang,Yanjie Xu,Qiaohong Chen,Yu Shu
出处
期刊:Ocean & Coastal Management [Elsevier]
卷期号:240: 106660-106660 被引量:9
标识
DOI:10.1016/j.ocecoaman.2023.106660
摘要

As an important data source, marine accident investigation reports are frequently used for accident analysis. However, it is hard to extract effective information since key knowledge is normally hidden in large blocks of text. In most cases, the collection of accident-related data is done manually. In this paper, a new knowledge graph construction approach to explore ship collision accidents is proposed, aiming to show the correlation among important factors of the accidents. In this research, 241 investigation reports on ship collision accidents from 2018 to 2021 published on the official website of the China Maritime Safety Administration (CMSA) were collected and analyzed. Then, the ship collision accident ontology module is constructed. According to the ontology information in the accident reports, entities were divided into context-based metadata and content-based metadata, which were used for describing different types of data. To extract the information for the accident report with semi-structured data, an information extraction module based on ontology was proposed. In this process, natural language processing (NLP) was used to obtain text information about the ontology. On this basis, the Ship Collision Accident Knowledge Graph (SCAKG) including 910 entity nodes and 1920 relation edges was constructed and stored in the graph database Neo4j. Finally, two case retrievals were conducted using the SCAKG to show the potential utilization of the method. The results show the effectiveness of the proposed approach in terms of discovering the internal relationship of the accident and could be used to expedite the judicial process, which simplifies the process of marine accident investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
5秒前
zhidong完成签到 ,获得积分10
8秒前
zhw完成签到 ,获得积分10
14秒前
skyinner完成签到 ,获得积分10
15秒前
飞快的冰淇淋完成签到 ,获得积分10
16秒前
阿童木完成签到,获得积分10
18秒前
研友_8K2QJZ完成签到,获得积分10
23秒前
Yuchengliu完成签到 ,获得积分10
24秒前
pain豆先生完成签到 ,获得积分10
31秒前
积极的中蓝完成签到 ,获得积分10
33秒前
35秒前
40秒前
JaneChen完成签到 ,获得积分10
41秒前
酷波er应助芝芝采纳,获得10
42秒前
嘎嘎坤完成签到 ,获得积分10
42秒前
一三二五七完成签到 ,获得积分0
43秒前
kehe!完成签到 ,获得积分0
47秒前
666发布了新的文献求助10
53秒前
纷飞完成签到 ,获得积分10
53秒前
55秒前
王饱饱完成签到 ,获得积分10
58秒前
wBw完成签到,获得积分10
1分钟前
1分钟前
CYL完成签到 ,获得积分10
1分钟前
小飞侠完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助dh采纳,获得10
1分钟前
花蕊完成签到 ,获得积分10
1分钟前
谢小盟完成签到 ,获得积分10
1分钟前
Behappy完成签到 ,获得积分10
1分钟前
科研通AI2S应助花蕊采纳,获得10
1分钟前
yy完成签到 ,获得积分10
1分钟前
郑雅柔完成签到 ,获得积分10
1分钟前
木之尹完成签到 ,获得积分10
1分钟前
只喝白开水完成签到 ,获得积分10
1分钟前
joeqin完成签到,获得积分10
1分钟前
cadcae完成签到,获得积分10
1分钟前
wushuimei完成签到 ,获得积分10
1分钟前
ussiMi完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146856
求助须知:如何正确求助?哪些是违规求助? 2798171
关于积分的说明 7826733
捐赠科研通 2454724
什么是DOI,文献DOI怎么找? 1306446
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565