Knowledge graph construction based on ship collision accident reports to improve maritime traffic safety

元数据 计算机科学 碰撞 本体论 图形 情报检索 事故(哲学) 过程(计算) 背景(考古学) 数据挖掘 计算机安全 万维网 地理 理论计算机科学 认识论 操作系统 哲学 考古
作者
Langxiong Gan,Beiyan Ye,Zhiqiu Huang,Yi Xu,Qiaohong Chen,Yaqing Shu
出处
期刊:Ocean & Coastal Management [Elsevier BV]
卷期号:240: 106660-106660 被引量:81
标识
DOI:10.1016/j.ocecoaman.2023.106660
摘要

As an important data source, marine accident investigation reports are frequently used for accident analysis. However, it is hard to extract effective information since key knowledge is normally hidden in large blocks of text. In most cases, the collection of accident-related data is done manually. In this paper, a new knowledge graph construction approach to explore ship collision accidents is proposed, aiming to show the correlation among important factors of the accidents. In this research, 241 investigation reports on ship collision accidents from 2018 to 2021 published on the official website of the China Maritime Safety Administration (CMSA) were collected and analyzed. Then, the ship collision accident ontology module is constructed. According to the ontology information in the accident reports, entities were divided into context-based metadata and content-based metadata, which were used for describing different types of data. To extract the information for the accident report with semi-structured data, an information extraction module based on ontology was proposed. In this process, natural language processing (NLP) was used to obtain text information about the ontology. On this basis, the Ship Collision Accident Knowledge Graph (SCAKG) including 910 entity nodes and 1920 relation edges was constructed and stored in the graph database Neo4j. Finally, two case retrievals were conducted using the SCAKG to show the potential utilization of the method. The results show the effectiveness of the proposed approach in terms of discovering the internal relationship of the accident and could be used to expedite the judicial process, which simplifies the process of marine accident investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lyeming完成签到,获得积分10
1秒前
2秒前
怡然立轩完成签到 ,获得积分10
2秒前
kongshuai发布了新的文献求助30
2秒前
3秒前
浮游应助Unstoppable采纳,获得10
3秒前
烟花应助咔咔咔采纳,获得30
4秒前
SciGPT应助llp采纳,获得30
4秒前
5秒前
好好学习完成签到,获得积分10
6秒前
Tang发布了新的文献求助10
6秒前
8秒前
超帅乐荷发布了新的文献求助30
8秒前
充电宝应助tao采纳,获得10
8秒前
9秒前
10秒前
10秒前
10秒前
生动的小蝴蝶完成签到,获得积分10
11秒前
12秒前
13秒前
瘦瘦摇伽完成签到 ,获得积分10
14秒前
璇子发布了新的文献求助10
14秒前
科研通AI5应助tao采纳,获得10
14秒前
15秒前
Ameliaykh完成签到,获得积分10
15秒前
753AA发布了新的文献求助10
15秒前
浪里白条发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
caoyonggang发布了新的文献求助10
17秒前
18秒前
18秒前
James完成签到,获得积分10
20秒前
远了个方发布了新的文献求助10
20秒前
20秒前
昂帕帕斯完成签到,获得积分10
21秒前
21秒前
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125100
求助须知:如何正确求助?哪些是违规求助? 4329107
关于积分的说明 13489886
捐赠科研通 4163829
什么是DOI,文献DOI怎么找? 2282591
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222983