Ultrafast Brain MRI Protocol at 1.5 T Using Deep Learning and Multi-shot EPI

医学 图像质量 流体衰减反转恢复 核医学 磁共振成像 单发 神经影像学 放射科 人工智能 计算机科学 图像(数学) 物理 精神科 光学
作者
Sebastian Altmann,Mario Alberto Abello Mercado,Lavinia Brockstedt,Andrea Kronfeld,Bryan Clifford,Thorsten Feiweier,Timo Uphaus,Sergiu Groppa,Marc A. Brockmann,Ahmed E. Othman
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (12): 2988-2998 被引量:8
标识
DOI:10.1016/j.acra.2023.04.019
摘要

To evaluate clinical feasibility and image quality of a comprehensive ultrafast brain MRI protocol with multi-shot echo planar imaging and deep learning-enhanced reconstruction at 1.5T.Thirty consecutive patients who underwent clinically indicated MRI at a 1.5 T scanner were prospectively included. A conventional MRI (c-MRI) protocol, including T1-, T2-, T2*-, T2-FLAIR, and diffusion-weighted images (DWI)-weighted sequences were acquired. In addition, ultrafast brain imaging with deep learning-enhanced reconstruction and multi-shot EPI (DLe-MRI) was performed. Subjective image quality was evaluated by three readers using a 4-point Likert scale. To assess interrater agreement, Fleiss' kappa (ϰ) was determined. For objective image analysis, relative signal intensity levels for grey matter, white matter, and cerebrospinal fluid were calculated.Time of acquisition (TA) of c-MRI protocols added up to 13:55 minutes, whereas the TA of DLe-MRI-based protocol added up to 3:04 minutes, resulting in a time reduction of 78%. All DLe-MRI acquisitions yielded diagnostic image quality with good absolute values for subjective image quality. C-MRI demonstrated slight advantages for DWI in overall subjective image quality (c-MRI: 3.93 [+/- 0.25] vs DLe-MRI: 3.87 [+/- 0.37], P = .04) and diagnostic confidence (c-MRI: 3.93 [+/- 0.25] vs DLe-MRI: 3.83 [+/- 3.83], P = .01). For most evaluated quality scores, moderate interobserver agreement was found. Objective image evaluation revealed comparable results for both techniques.DLe-MRI is feasible and allows for highly accelerated comprehensive brain MRI within 3minutes at 1.5 T with good image quality. This technique may potentially strengthen the role of MRI in neurological emergencies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助忧郁的灵枫采纳,获得10
刚刚
大个应助忧郁的灵枫采纳,获得10
刚刚
小分队发布了新的文献求助10
1秒前
xuxu应助鳗鱼傲柏采纳,获得10
1秒前
科研通AI6应助忧郁的灵枫采纳,获得50
1秒前
PandaC发布了新的文献求助10
1秒前
科研通AI2S应助忧郁的灵枫采纳,获得10
1秒前
CodeCraft应助忧郁的灵枫采纳,获得10
1秒前
1秒前
科研通AI6应助chengxue采纳,获得10
1秒前
汉堡包应助忧郁的灵枫采纳,获得10
1秒前
赘婿应助忧郁的灵枫采纳,获得10
1秒前
zhw完成签到 ,获得积分10
1秒前
田様应助忧郁的灵枫采纳,获得10
2秒前
大模型应助zhr采纳,获得10
2秒前
科研通AI6应助忧郁的灵枫采纳,获得10
2秒前
2秒前
123完成签到 ,获得积分10
2秒前
3秒前
窗外的你发布了新的文献求助10
4秒前
inter完成签到,获得积分10
4秒前
X123完成签到,获得积分10
5秒前
5秒前
淡淡从安完成签到 ,获得积分10
5秒前
5秒前
Joker发布了新的文献求助10
5秒前
领导范儿应助开朗小懒猪采纳,获得10
6秒前
离开时是天命完成签到,获得积分10
6秒前
醉玉颓山完成签到,获得积分10
6秒前
Yimco完成签到,获得积分10
7秒前
Bigheart贝卡斯完成签到,获得积分10
7秒前
胡萝卜完成签到 ,获得积分10
7秒前
纷飞漫天寂寥完成签到,获得积分10
7秒前
7秒前
lingVing瑜发布了新的文献求助10
7秒前
8秒前
vv发布了新的文献求助10
9秒前
清颜完成签到 ,获得积分10
9秒前
wakixe发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439303
求助须知:如何正确求助?哪些是违规求助? 4550351
关于积分的说明 14224204
捐赠科研通 4471300
什么是DOI,文献DOI怎么找? 2450329
邀请新用户注册赠送积分活动 1441193
关于科研通互助平台的介绍 1417863