作者
Claudia Steiner,Sebastian Koch,Tamara Evanoff,Nichole Welch,Rachael Kostelecky,Rosemary Callahan,Emily M. Murphy,Tom Nguyen,Caroline Hall,Sizhao Lu,Edwin F. de Zoeten,Mary C.M. Weiser‐Evans,Ian M. Cartwright,Sean P. Colgan
摘要
Crohn disease (CD) is a highly morbid chronic inflammatory disease. Although many patients with CD also develop fibrostenosing complications, there are no medical therapies for intestinal fibrosis. This is due, in part, to a lack of high-fidelity biomimetic models to enhance understanding and drug development, which highlights the need for developing in vivo models of inflammatory bowel disease–related intestinal fibrosis. This study investigates whether the TNFΔARE mouse, a model of ileal inflammation, also develops intestinal fibrosis. Several clinically relevant outcomes were studied, including features of structural fibrosis, histologic fibrosis, and gene expression. These include the use of a new luminal casting technique, traditional histologic outcomes, use of second harmonic imaging, and quantitative PCR. These features were studied in aged TNFΔARE mice as well as in cohorts of numerous ages. At >24 weeks of age, TNFΔARE mice developed structural, histologic, and transcriptional changes of ileal fibrosis. Protein and RNA expression profiles showed changes as early as 6 weeks, coinciding with histologic changes as early as 14 to 15 weeks. Overt structural fibrosis was delayed until at least 16 weeks and was most developed after 24 weeks. This study found that the TNFΔARE mouse is a viable and highly tractable model of ileal fibrosis. This model and the techniques used herein can be leveraged for both mechanistic studies and therapeutic development for the treatment of intestinal fibrosis. Crohn disease (CD) is a highly morbid chronic inflammatory disease. Although many patients with CD also develop fibrostenosing complications, there are no medical therapies for intestinal fibrosis. This is due, in part, to a lack of high-fidelity biomimetic models to enhance understanding and drug development, which highlights the need for developing in vivo models of inflammatory bowel disease–related intestinal fibrosis. This study investigates whether the TNFΔARE mouse, a model of ileal inflammation, also develops intestinal fibrosis. Several clinically relevant outcomes were studied, including features of structural fibrosis, histologic fibrosis, and gene expression. These include the use of a new luminal casting technique, traditional histologic outcomes, use of second harmonic imaging, and quantitative PCR. These features were studied in aged TNFΔARE mice as well as in cohorts of numerous ages. At >24 weeks of age, TNFΔARE mice developed structural, histologic, and transcriptional changes of ileal fibrosis. Protein and RNA expression profiles showed changes as early as 6 weeks, coinciding with histologic changes as early as 14 to 15 weeks. Overt structural fibrosis was delayed until at least 16 weeks and was most developed after 24 weeks. This study found that the TNFΔARE mouse is a viable and highly tractable model of ileal fibrosis. This model and the techniques used herein can be leveraged for both mechanistic studies and therapeutic development for the treatment of intestinal fibrosis. This Month in AJPThe American Journal of PathologyVol. 193Issue 8PreviewThe molecular modifications occurring at the tonsillar tissues associated with lymphatic spread are critical in anti-tumor immune response as well as disease progression in oropharyngeal carcinomas (OPCs). By gene expression profiling of peritumoral lymphoid regions, Wakisaka et al (Am J Pathol 2023, 1006–1012) explored the unique microenvironment of secondary lymphoid organs involved in OPC. The analysis identified transcriptional programs associated with metastasis as well as potential patterns of anti-tumor immune response, and may aid in patient stratification for treatments. Full-Text PDF