亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DCI-PGCN: Dual-Channel Interaction Portable Graph Convolutional Network for Landslide Detection

计算机科学 山崩 图形 对偶(语法数字) 遥感 理论计算机科学 地质学 艺术 文学类 岩土工程
作者
Weiming Li,Yibin Fu,Shuaishuai Fan,Mingrui Xin,Hongyang Bai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:15
标识
DOI:10.1109/tgrs.2023.3273623
摘要

Landslide, a kind of destructive natural disaster, often occurs in the mountainous areas of China. Landslide information instant collection plays an important role in taking appropriate remedial measures and personnel evacuation. In recent years, the use of Convolutional Neural Network (CNN) for landslide regional detection achieved good performance, however, most CNN-based methods had no regard for the internal connection of the cover materials in the disaster occurrence area. Moreover, the information revealed by the internal deformation features was ignored, and the same surface object in the image presents different features under different illumination, environment and resolution, which makes it difficult to extract the structural features of landslide images. In this paper, we propose a novel graph convolutional network for landslide detection, inspired by attention mechanism's ability to focus on selective information supplemented with both different channels. The global maximum node connection strategy with positive and negative connectivity makes the Graph Convolution Network (GCN) more portable, which is used as the basic unit of graph feature propagation to construct a multi-layer residual connection module. In order to learn interactively and spread graph information, channel dimension is added to make the boundary of features between classes more discriminative. Extensive experiments on Sichuan province and Bijie landslide datasets show that our proposed method outperforms other detection models and achieves high precision and accuracy. In addition, we also carried out landslide detection for Zhaotong of Yunnan Province on GF-2 original images to prove the effectiveness and applicability of the algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aqib发布了新的文献求助10
3秒前
4秒前
科研通AI5应助西瓜嘻嘻嘻采纳,获得10
7秒前
吴昕昕发布了新的文献求助10
9秒前
未晚完成签到 ,获得积分10
11秒前
香蕉觅云应助Aqib采纳,获得10
15秒前
早晨发布了新的文献求助10
21秒前
孤鸿.完成签到 ,获得积分10
23秒前
25秒前
彭于晏应助11采纳,获得10
25秒前
26秒前
吴昕昕完成签到,获得积分10
27秒前
28秒前
iwaking完成签到,获得积分10
29秒前
hxn发布了新的文献求助30
32秒前
通通发布了新的文献求助10
32秒前
早晨完成签到,获得积分10
34秒前
Lucas应助通通采纳,获得10
40秒前
41秒前
WANG完成签到,获得积分10
44秒前
有机发布了新的文献求助10
45秒前
摆渡人完成签到,获得积分10
55秒前
提桶跑路完成签到 ,获得积分10
57秒前
温柔的天奇完成签到 ,获得积分10
1分钟前
实验耗材完成签到 ,获得积分10
1分钟前
1分钟前
lhlhl完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小小林发布了新的文献求助10
1分钟前
zl13332完成签到 ,获得积分10
1分钟前
1分钟前
通通完成签到 ,获得积分10
1分钟前
hhh完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
SUT文献战神完成签到,获得积分10
1分钟前
董可以发布了新的文献求助10
1分钟前
小二郎应助董可以采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990020
求助须知:如何正确求助?哪些是违规求助? 3532077
关于积分的说明 11256276
捐赠科研通 3270943
什么是DOI,文献DOI怎么找? 1805139
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228