DCI-PGCN: Dual-Channel Interaction Portable Graph Convolutional Network for Landslide Detection

计算机科学 山崩 图形 对偶(语法数字) 遥感 理论计算机科学 地质学 艺术 文学类 岩土工程
作者
Weiming Li,Yibin Fu,Shuaishuai Fan,Mingrui Xin,Hongyang Bai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:15
标识
DOI:10.1109/tgrs.2023.3273623
摘要

Landslide, a kind of destructive natural disaster, often occurs in the mountainous areas of China. Landslide information instant collection plays an important role in taking appropriate remedial measures and personnel evacuation. In recent years, the use of Convolutional Neural Network (CNN) for landslide regional detection achieved good performance, however, most CNN-based methods had no regard for the internal connection of the cover materials in the disaster occurrence area. Moreover, the information revealed by the internal deformation features was ignored, and the same surface object in the image presents different features under different illumination, environment and resolution, which makes it difficult to extract the structural features of landslide images. In this paper, we propose a novel graph convolutional network for landslide detection, inspired by attention mechanism's ability to focus on selective information supplemented with both different channels. The global maximum node connection strategy with positive and negative connectivity makes the Graph Convolution Network (GCN) more portable, which is used as the basic unit of graph feature propagation to construct a multi-layer residual connection module. In order to learn interactively and spread graph information, channel dimension is added to make the boundary of features between classes more discriminative. Extensive experiments on Sichuan province and Bijie landslide datasets show that our proposed method outperforms other detection models and achieves high precision and accuracy. In addition, we also carried out landslide detection for Zhaotong of Yunnan Province on GF-2 original images to prove the effectiveness and applicability of the algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ersan完成签到,获得积分10
2秒前
Hello应助nkmenghan采纳,获得30
3秒前
3秒前
3秒前
粗心的听安完成签到,获得积分10
3秒前
念姬完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
6秒前
指哪打哪完成签到,获得积分10
6秒前
6秒前
静静子发布了新的文献求助100
7秒前
Ray完成签到 ,获得积分10
8秒前
文静的天蓝完成签到,获得积分10
8秒前
tszjw168完成签到 ,获得积分10
9秒前
手打鱼丸完成签到 ,获得积分10
10秒前
体贴凌柏发布了新的文献求助10
10秒前
开心快乐发大财完成签到,获得积分10
12秒前
萌萌哒完成签到,获得积分10
12秒前
小龅牙吖完成签到,获得积分10
12秒前
Propitious完成签到,获得积分10
13秒前
徐先生1106完成签到,获得积分10
13秒前
Epiphany完成签到,获得积分10
14秒前
舒心的久完成签到 ,获得积分10
14秒前
闻巷雨完成签到 ,获得积分10
16秒前
北风完成签到,获得积分10
17秒前
xliiii完成签到,获得积分10
17秒前
时光倒流的鱼完成签到,获得积分10
18秒前
LL完成签到,获得积分10
18秒前
李李完成签到,获得积分20
18秒前
雨无意完成签到,获得积分10
19秒前
盛宇大天才完成签到,获得积分10
21秒前
游戏人间完成签到 ,获得积分10
22秒前
23秒前
科研通AI5应助淡淡的忆彤采纳,获得10
23秒前
早日毕业完成签到,获得积分10
23秒前
Billie完成签到,获得积分10
24秒前
积极行天完成签到,获得积分10
24秒前
98完成签到,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029