DCI-PGCN: Dual-Channel Interaction Portable Graph Convolutional Network for Landslide Detection

计算机科学 山崩 图形 对偶(语法数字) 遥感 理论计算机科学 地质学 艺术 文学类 岩土工程
作者
Weiming Li,Yibin Fu,Shuaishuai Fan,Mingrui Xin,Hongyang Bai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:15
标识
DOI:10.1109/tgrs.2023.3273623
摘要

Landslide, a kind of destructive natural disaster, often occurs in the mountainous areas of China. Landslide information instant collection plays an important role in taking appropriate remedial measures and personnel evacuation. In recent years, the use of Convolutional Neural Network (CNN) for landslide regional detection achieved good performance, however, most CNN-based methods had no regard for the internal connection of the cover materials in the disaster occurrence area. Moreover, the information revealed by the internal deformation features was ignored, and the same surface object in the image presents different features under different illumination, environment and resolution, which makes it difficult to extract the structural features of landslide images. In this paper, we propose a novel graph convolutional network for landslide detection, inspired by attention mechanism's ability to focus on selective information supplemented with both different channels. The global maximum node connection strategy with positive and negative connectivity makes the Graph Convolution Network (GCN) more portable, which is used as the basic unit of graph feature propagation to construct a multi-layer residual connection module. In order to learn interactively and spread graph information, channel dimension is added to make the boundary of features between classes more discriminative. Extensive experiments on Sichuan province and Bijie landslide datasets show that our proposed method outperforms other detection models and achieves high precision and accuracy. In addition, we also carried out landslide detection for Zhaotong of Yunnan Province on GF-2 original images to prove the effectiveness and applicability of the algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
白桦林泪发布了新的文献求助10
1秒前
嘞是举仔完成签到,获得积分10
2秒前
有米饭没完成签到 ,获得积分10
3秒前
Fine发布了新的文献求助10
3秒前
九九九发布了新的文献求助10
3秒前
wish发布了新的文献求助10
5秒前
6秒前
大喵发布了新的文献求助10
6秒前
Aurora完成签到,获得积分10
8秒前
黄彤彤完成签到,获得积分10
9秒前
公冶笑白发布了新的文献求助10
10秒前
九九九完成签到,获得积分10
11秒前
雪儿完成签到 ,获得积分10
11秒前
赵杰完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
12秒前
13秒前
13秒前
所所应助water采纳,获得10
14秒前
15秒前
充电宝应助白桦林泪采纳,获得10
15秒前
bbh发布了新的文献求助10
16秒前
11完成签到,获得积分20
16秒前
bbh发布了新的文献求助10
16秒前
卡卡罗特发布了新的文献求助10
16秒前
若空行走发布了新的文献求助10
16秒前
17秒前
bbh发布了新的文献求助10
17秒前
bbh发布了新的文献求助10
17秒前
zyyin发布了新的文献求助10
18秒前
19秒前
20秒前
21秒前
123完成签到,获得积分20
21秒前
共享精神应助嘞是举仔采纳,获得10
22秒前
Ava应助大喵采纳,获得10
23秒前
贲立辉发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531910
关于积分的说明 11255394
捐赠科研通 3270563
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809190