生物
遗传建筑学
作物
特质
生物量(生态学)
数量性状位点
现场试验
农学
生物技术
基因
遗传学
计算机科学
程序设计语言
作者
Yulu Ye,Peilin Wang,Man Zhang,Mubashir Abbas,Jiaxin Zhang,Chengzhen Liang,Yuan Wang,Yunxiao Wei,Zhigang Meng,Rui Zhang
出处
期刊:Plant Journal
[Wiley]
日期:2023-05-08
卷期号:115 (4): 937-951
被引量:7
摘要
Plant height (PH) is an important agronomic trait affecting crop architecture, biomass, resistance to lodging and mechanical harvesting. Elucidating the genetic governance of plant height is crucial because of the global demand for high crop yields. However, during the rapid growth period of plants the PH changes a lot on a daily basis, which makes it difficult to accurately phenotype the trait by hand on a large scale. In this study, an unmanned aerial vehicle (UAV)-based remote-sensing phenotyping platform was applied to obtain time-series PHs of 320 upland cotton accessions in three different field trials. The results showed that the PHs obtained from UAV images were significantly correlated with ground-based manual measurements, for three trials (R2 = 0.96, 0.95 and 0.96). Two genetic loci on chromosomes A01 and A11 associated with PH were identified by genome-wide association studies (GWAS). GhUBP15 and GhCUL1 were identified to influence PH in further analysis. We obtained a time series of PH values for three field conditions based on remote sensing with UAV. The key genes identified in this study are of great value for the breeding of ideal plant architecture in cotton.
科研通智能强力驱动
Strongly Powered by AbleSci AI