Unsupervised anomaly localization in high-resolution breast scans using deep pluralistic image completion

人工智能 计算机科学 推论 异常检测 公制(单位) 模式识别(心理学) 任务(项目管理) 异常(物理) 深度学习 机器学习 图像(数学) 嵌入 计算机视觉 运营管理 物理 管理 凝聚态物理 经济
作者
Nicholas Konz,Haoyu Dong,Maciej A. Mazurowski
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:87: 102836-102836
标识
DOI:10.1016/j.media.2023.102836
摘要

Automated tumor detection in Digital Breast Tomosynthesis (DBT) is a difficult task due to natural tumor rarity, breast tissue variability, and high resolution. Given the scarcity of abnormal images and the abundance of normal images for this problem, an anomaly detection/localization approach could be well-suited. However, most anomaly localization research in machine learning focuses on non-medical datasets, and we find that these methods fall short when adapted to medical imaging datasets. The problem is alleviated when we solve the task from the image completion perspective, in which the presence of anomalies can be indicated by a discrepancy between the original appearance and its auto-completion conditioned on the surroundings. However, there are often many valid normal completions given the same surroundings, especially in the DBT dataset, making this evaluation criterion less precise. To address such an issue, we consider pluralistic image completion by exploring the distribution of possible completions instead of generating fixed predictions. This is achieved through our novel application of spatial dropout on the completion network during inference time only, which requires no additional training cost and is effective at generating diverse completions. We further propose minimum completion distance (MCD), a new metric for detecting anomalies, thanks to these stochastic completions. We provide theoretical as well as empirical support for the superiority over existing methods of using the proposed method for anomaly localization. On the DBT dataset, our model outperforms other state-of-the-art methods by at least 10% AUROC for pixel-level detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www完成签到,获得积分10
刚刚
小小应助kingwill采纳,获得30
1秒前
隐形曼青应助ly采纳,获得10
1秒前
英勇的大树关注了科研通微信公众号
1秒前
cliffzhang发布了新的文献求助10
3秒前
桃李春风一杯酒完成签到,获得积分10
3秒前
adamchris发布了新的文献求助10
3秒前
开放雨真完成签到 ,获得积分10
4秒前
赵一迈完成签到,获得积分10
5秒前
6秒前
Vivian发布了新的文献求助10
6秒前
7秒前
椿·完成签到,获得积分10
7秒前
7秒前
默默善愁发布了新的文献求助10
7秒前
俏皮白云完成签到 ,获得积分10
8秒前
午梦千山发布了新的文献求助10
10秒前
Hikx发布了新的文献求助10
10秒前
汪旺完成签到 ,获得积分10
10秒前
科研通AI6应助咸鱼采纳,获得10
11秒前
生动娩发布了新的文献求助10
12秒前
11完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
小火苗发布了新的文献求助10
14秒前
Vivian完成签到,获得积分10
16秒前
19秒前
19秒前
19秒前
万能图书馆应助ZSC采纳,获得10
20秒前
gao完成签到,获得积分10
21秒前
21秒前
Epicbird完成签到 ,获得积分10
22秒前
23秒前
Tian发布了新的文献求助10
23秒前
kkk发布了新的文献求助10
23秒前
24秒前
adamchris发布了新的文献求助10
24秒前
生动娩发布了新的文献求助10
25秒前
午梦千山完成签到,获得积分10
25秒前
蔡继海发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599456
求助须知:如何正确求助?哪些是违规求助? 4685036
关于积分的说明 14837601
捐赠科研通 4668162
什么是DOI,文献DOI怎么找? 2537964
邀请新用户注册赠送积分活动 1505398
关于科研通互助平台的介绍 1470783