清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Unsupervised anomaly localization in high-resolution breast scans using deep pluralistic image completion

人工智能 计算机科学 推论 异常检测 公制(单位) 模式识别(心理学) 任务(项目管理) 异常(物理) 深度学习 机器学习 图像(数学) 嵌入 计算机视觉 运营管理 物理 管理 凝聚态物理 经济
作者
Nicholas Konz,Haoyu Dong,Maciej A. Mazurowski
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:87: 102836-102836
标识
DOI:10.1016/j.media.2023.102836
摘要

Automated tumor detection in Digital Breast Tomosynthesis (DBT) is a difficult task due to natural tumor rarity, breast tissue variability, and high resolution. Given the scarcity of abnormal images and the abundance of normal images for this problem, an anomaly detection/localization approach could be well-suited. However, most anomaly localization research in machine learning focuses on non-medical datasets, and we find that these methods fall short when adapted to medical imaging datasets. The problem is alleviated when we solve the task from the image completion perspective, in which the presence of anomalies can be indicated by a discrepancy between the original appearance and its auto-completion conditioned on the surroundings. However, there are often many valid normal completions given the same surroundings, especially in the DBT dataset, making this evaluation criterion less precise. To address such an issue, we consider pluralistic image completion by exploring the distribution of possible completions instead of generating fixed predictions. This is achieved through our novel application of spatial dropout on the completion network during inference time only, which requires no additional training cost and is effective at generating diverse completions. We further propose minimum completion distance (MCD), a new metric for detecting anomalies, thanks to these stochastic completions. We provide theoretical as well as empirical support for the superiority over existing methods of using the proposed method for anomaly localization. On the DBT dataset, our model outperforms other state-of-the-art methods by at least 10% AUROC for pixel-level detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
乐乐万岁发布了新的文献求助20
25秒前
彩色的芝麻完成签到 ,获得积分10
29秒前
51秒前
1分钟前
heisa完成签到,获得积分10
2分钟前
乐乐万岁完成签到,获得积分20
2分钟前
2分钟前
2分钟前
Hiker完成签到,获得积分10
3分钟前
lanxinge完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得30
4分钟前
yw完成签到 ,获得积分10
4分钟前
4分钟前
IlIIlIlIIIllI完成签到,获得积分10
5分钟前
方白秋完成签到,获得积分10
5分钟前
YZ完成签到 ,获得积分10
5分钟前
5分钟前
woxinyouyou完成签到,获得积分0
6分钟前
迅速灵竹完成签到 ,获得积分10
6分钟前
6分钟前
科研通AI2S应助ARESCI采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
DTP完成签到,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
Sophiaple发布了新的文献求助10
6分钟前
吴医生发布了新的文献求助10
6分钟前
7分钟前
7分钟前
吴医生完成签到,获得积分10
7分钟前
7分钟前
梓歆完成签到 ,获得积分10
8分钟前
Orange应助科研通管家采纳,获得10
8分钟前
cosine发布了新的文献求助10
8分钟前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434819
求助须知:如何正确求助?哪些是违规求助? 3032141
关于积分的说明 8944320
捐赠科研通 2720095
什么是DOI,文献DOI怎么找? 1492148
科研通“疑难数据库(出版商)”最低求助积分说明 689725
邀请新用户注册赠送积分活动 685847