Unsupervised anomaly localization in high-resolution breast scans using deep pluralistic image completion

人工智能 计算机科学 推论 异常检测 公制(单位) 模式识别(心理学) 任务(项目管理) 异常(物理) 深度学习 机器学习 图像(数学) 嵌入 计算机视觉 物理 经济 管理 凝聚态物理 运营管理
作者
Nicholas Konz,Haoyu Dong,Maciej A. Mazurowski
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:87: 102836-102836
标识
DOI:10.1016/j.media.2023.102836
摘要

Automated tumor detection in Digital Breast Tomosynthesis (DBT) is a difficult task due to natural tumor rarity, breast tissue variability, and high resolution. Given the scarcity of abnormal images and the abundance of normal images for this problem, an anomaly detection/localization approach could be well-suited. However, most anomaly localization research in machine learning focuses on non-medical datasets, and we find that these methods fall short when adapted to medical imaging datasets. The problem is alleviated when we solve the task from the image completion perspective, in which the presence of anomalies can be indicated by a discrepancy between the original appearance and its auto-completion conditioned on the surroundings. However, there are often many valid normal completions given the same surroundings, especially in the DBT dataset, making this evaluation criterion less precise. To address such an issue, we consider pluralistic image completion by exploring the distribution of possible completions instead of generating fixed predictions. This is achieved through our novel application of spatial dropout on the completion network during inference time only, which requires no additional training cost and is effective at generating diverse completions. We further propose minimum completion distance (MCD), a new metric for detecting anomalies, thanks to these stochastic completions. We provide theoretical as well as empirical support for the superiority over existing methods of using the proposed method for anomaly localization. On the DBT dataset, our model outperforms other state-of-the-art methods by at least 10% AUROC for pixel-level detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助liuxianglin2006采纳,获得50
刚刚
1秒前
zhonglv7应助oolong采纳,获得10
2秒前
2秒前
一点发布了新的文献求助10
3秒前
研友_VZG7GZ应助白踏歌采纳,获得20
3秒前
晚若旧发布了新的文献求助10
4秒前
4秒前
yff发布了新的文献求助10
4秒前
莫封叶发布了新的文献求助30
4秒前
可爱的函函应助落后谷兰采纳,获得10
5秒前
5秒前
Dominic7888完成签到,获得积分10
5秒前
烯烃完成签到,获得积分10
5秒前
6秒前
6秒前
老实的采蓝完成签到,获得积分10
6秒前
zhong完成签到,获得积分10
6秒前
7秒前
mof发布了新的文献求助10
7秒前
8秒前
8秒前
笨笨的秋发布了新的文献求助10
8秒前
8秒前
学习发布了新的文献求助10
8秒前
小硕发布了新的文献求助10
9秒前
莫大完成签到 ,获得积分10
9秒前
佚名123发布了新的文献求助10
9秒前
耶耶耶发布了新的文献求助30
10秒前
10秒前
正己化人应助咸柴采纳,获得10
10秒前
打打应助献世采纳,获得10
10秒前
小二郎应助微笑诗柳采纳,获得10
10秒前
10秒前
11秒前
11秒前
科研zhu完成签到,获得积分20
12秒前
浮游应助怕孤单的平卉采纳,获得10
12秒前
小脚丫发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5169002
求助须知:如何正确求助?哪些是违规求助? 4360389
关于积分的说明 13576138
捐赠科研通 4207207
什么是DOI,文献DOI怎么找? 2307389
邀请新用户注册赠送积分活动 1306942
关于科研通互助平台的介绍 1253600