Unsupervised anomaly localization in high-resolution breast scans using deep pluralistic image completion

人工智能 计算机科学 推论 异常检测 公制(单位) 模式识别(心理学) 任务(项目管理) 异常(物理) 深度学习 机器学习 图像(数学) 嵌入 计算机视觉 运营管理 物理 管理 凝聚态物理 经济
作者
Nicholas Konz,Haoyu Dong,Maciej A. Mazurowski
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:87: 102836-102836
标识
DOI:10.1016/j.media.2023.102836
摘要

Automated tumor detection in Digital Breast Tomosynthesis (DBT) is a difficult task due to natural tumor rarity, breast tissue variability, and high resolution. Given the scarcity of abnormal images and the abundance of normal images for this problem, an anomaly detection/localization approach could be well-suited. However, most anomaly localization research in machine learning focuses on non-medical datasets, and we find that these methods fall short when adapted to medical imaging datasets. The problem is alleviated when we solve the task from the image completion perspective, in which the presence of anomalies can be indicated by a discrepancy between the original appearance and its auto-completion conditioned on the surroundings. However, there are often many valid normal completions given the same surroundings, especially in the DBT dataset, making this evaluation criterion less precise. To address such an issue, we consider pluralistic image completion by exploring the distribution of possible completions instead of generating fixed predictions. This is achieved through our novel application of spatial dropout on the completion network during inference time only, which requires no additional training cost and is effective at generating diverse completions. We further propose minimum completion distance (MCD), a new metric for detecting anomalies, thanks to these stochastic completions. We provide theoretical as well as empirical support for the superiority over existing methods of using the proposed method for anomaly localization. On the DBT dataset, our model outperforms other state-of-the-art methods by at least 10% AUROC for pixel-level detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yy发布了新的文献求助10
1秒前
gejun完成签到,获得积分10
1秒前
1秒前
深情安青应助噗噗xie采纳,获得10
2秒前
2秒前
霸气忙内发布了新的文献求助10
3秒前
3秒前
无花果应助wayhome采纳,获得10
3秒前
3秒前
知许解夏应助此时此刻采纳,获得10
6秒前
6秒前
爬山虎完成签到,获得积分10
6秒前
7秒前
7秒前
hu发布了新的文献求助10
7秒前
7秒前
淡淡菠萝发布了新的文献求助10
8秒前
8秒前
8秒前
俭朴的期待完成签到,获得积分10
9秒前
传奇3应助Cc采纳,获得10
10秒前
10秒前
hahakeyan完成签到,获得积分10
10秒前
10秒前
阿南发布了新的文献求助10
11秒前
Fiona000001发布了新的文献求助10
11秒前
哈欠发布了新的文献求助10
11秒前
11秒前
室内设计发布了新的文献求助10
12秒前
12秒前
田様应助电闪采纳,获得10
12秒前
天赐殊荣发布了新的文献求助10
13秒前
13秒前
圆锥香蕉完成签到,获得积分10
13秒前
贿猫发布了新的文献求助10
14秒前
JLAlpaca发布了新的文献求助10
15秒前
慕青应助strings采纳,获得10
15秒前
马尼拉发布了新的文献求助10
16秒前
安河桥发布了新的文献求助10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961321
求助须知:如何正确求助?哪些是违规求助? 3507666
关于积分的说明 11137254
捐赠科研通 3240099
什么是DOI,文献DOI怎么找? 1790749
邀请新用户注册赠送积分活动 872460
科研通“疑难数据库(出版商)”最低求助积分说明 803271