Unsupervised anomaly localization in high-resolution breast scans using deep pluralistic image completion

人工智能 计算机科学 推论 异常检测 公制(单位) 模式识别(心理学) 任务(项目管理) 异常(物理) 深度学习 机器学习 图像(数学) 嵌入 计算机视觉 运营管理 物理 管理 凝聚态物理 经济
作者
Nicholas Konz,Haoyu Dong,Maciej A. Mazurowski
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:87: 102836-102836
标识
DOI:10.1016/j.media.2023.102836
摘要

Automated tumor detection in Digital Breast Tomosynthesis (DBT) is a difficult task due to natural tumor rarity, breast tissue variability, and high resolution. Given the scarcity of abnormal images and the abundance of normal images for this problem, an anomaly detection/localization approach could be well-suited. However, most anomaly localization research in machine learning focuses on non-medical datasets, and we find that these methods fall short when adapted to medical imaging datasets. The problem is alleviated when we solve the task from the image completion perspective, in which the presence of anomalies can be indicated by a discrepancy between the original appearance and its auto-completion conditioned on the surroundings. However, there are often many valid normal completions given the same surroundings, especially in the DBT dataset, making this evaluation criterion less precise. To address such an issue, we consider pluralistic image completion by exploring the distribution of possible completions instead of generating fixed predictions. This is achieved through our novel application of spatial dropout on the completion network during inference time only, which requires no additional training cost and is effective at generating diverse completions. We further propose minimum completion distance (MCD), a new metric for detecting anomalies, thanks to these stochastic completions. We provide theoretical as well as empirical support for the superiority over existing methods of using the proposed method for anomaly localization. On the DBT dataset, our model outperforms other state-of-the-art methods by at least 10% AUROC for pixel-level detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nonory完成签到,获得积分10
刚刚
阿湫完成签到,获得积分10
刚刚
刚刚
金金完成签到,获得积分10
刚刚
WXY完成签到,获得积分10
1秒前
cong完成签到,获得积分10
1秒前
至若春和景明完成签到,获得积分10
2秒前
xiaoxixixier完成签到 ,获得积分10
2秒前
飞飞完成签到,获得积分10
2秒前
Dromaeotroodon完成签到,获得积分10
3秒前
3秒前
3秒前
火星上的铃铛完成签到,获得积分10
4秒前
jianjiao完成签到,获得积分10
5秒前
俭朴外绣发布了新的文献求助10
5秒前
6秒前
Pessimist发布了新的文献求助10
6秒前
YZFR1关注了科研通微信公众号
7秒前
风的味道完成签到,获得积分10
8秒前
西安浴日光能赵炜完成签到,获得积分10
8秒前
范yx发布了新的文献求助10
9秒前
jack1511完成签到,获得积分10
9秒前
王玉丽完成签到,获得积分10
9秒前
徐徐图之发布了新的文献求助10
10秒前
w2503完成签到,获得积分10
10秒前
阳光少女完成签到,获得积分10
10秒前
11秒前
张瀚文发布了新的文献求助10
11秒前
张乔然完成签到,获得积分10
11秒前
科研天才完成签到 ,获得积分10
11秒前
lllll完成签到,获得积分10
13秒前
半钱半夏完成签到,获得积分10
13秒前
Pwrry完成签到,获得积分10
13秒前
suiyue完成签到 ,获得积分10
13秒前
yh完成签到,获得积分10
15秒前
冷酷的映雁应助冷傲凝琴采纳,获得10
15秒前
15秒前
16秒前
酷炫柔发布了新的文献求助10
16秒前
斯文败类应助宋依依采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645277
求助须知:如何正确求助?哪些是违规求助? 4768340
关于积分的说明 15027650
捐赠科研通 4803859
什么是DOI,文献DOI怎么找? 2568523
邀请新用户注册赠送积分活动 1525813
关于科研通互助平台的介绍 1485484