Differently shaped Ag crystallites and four current transport paths at sintered Ag/Si interface of crystalline silicon solar cells

多晶硅 材料科学 熔块 微晶 欧姆接触 晶体硅 共发射极 蚀刻(微加工) 太阳能电池 外延 润湿 光电子学 纳米技术 复合材料 冶金 图层(电子) 薄膜晶体管
作者
Bowen Feng,Yaoping Liu,Wei Chen,Guoguang Xing,Xingqian Chen,Xiaolong Du
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier]
卷期号:257: 112381-112381 被引量:10
标识
DOI:10.1016/j.solmat.2023.112381
摘要

The comprehensive understanding of the Ohmic contact mechanism on the front metalization is highly desirable for further improvement of crystalline silicon solar cells performance. However, there are still controversial views about current transport paths between silver electrode and silicon emitter. To clarify this significant issue, we applied the selective acid etching (AE) process and the method of mechanical stripping process to prepare proper samples for direct observation of the Ag/Si contact interface. It is revealed that four kinds of Ag crystallites are grown with variant shapes and sizes on the pyramid tips, {111} planes, edges and tiny bumps at valleys of the textured Si surface resulting from anisotropic etching of Si emitter by the flowing molten glass frit during firing and the consequent epitaxially growth of Ag on the etching pits during cooling. All these Ag crystallites are in direct contact with Si emitter, serving as the most important contact points on the Si side. Meanwhile, three kinds of spherical Ag particles are formed in the resolidified glass frit during cooling which are crucial tunneling paths, conducting between glass-covered Ag crystallites on silicon and Ag bulk above. As a whole, four current transport paths are suggested mainly via Ag crystallites, Ag particles or both. In addition, the four electron transport paths are further confirmed by the Kelvin probe force microscopy characterization. The clarification and detailed understanding of all current transport paths are key points to design better silver paste and sintering process, and hence to improve the solar cell performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Corilla完成签到,获得积分10
刚刚
慕容半邪发布了新的文献求助10
刚刚
jasmine970000完成签到 ,获得积分10
1秒前
1秒前
赘婿应助坚强的赛凤采纳,获得10
2秒前
2秒前
3秒前
TT完成签到,获得积分10
3秒前
3秒前
田様应助品品采纳,获得10
3秒前
复杂鼠标完成签到,获得积分10
4秒前
nini发布了新的文献求助10
4秒前
顺利的伊应助满意的柏柳采纳,获得10
5秒前
杨森omg发布了新的文献求助10
5秒前
粗犷的灵松完成签到 ,获得积分10
5秒前
6秒前
huazhangchina发布了新的文献求助30
7秒前
7秒前
8秒前
传奇3应助kkkl采纳,获得10
8秒前
8秒前
8秒前
五十一笑声应助斩封采纳,获得100
9秒前
小莹完成签到,获得积分10
9秒前
儒雅奇男子完成签到 ,获得积分10
9秒前
齐桓完成签到,获得积分10
9秒前
Miller应助俏皮的以晴采纳,获得20
10秒前
Loscin完成签到,获得积分10
10秒前
10秒前
白七为皂关注了科研通微信公众号
10秒前
哭泣的冬易完成签到,获得积分10
11秒前
张聪发布了新的文献求助10
11秒前
科研通AI2S应助JxJ采纳,获得10
11秒前
xxm发布了新的文献求助10
11秒前
12秒前
saluo完成签到 ,获得积分10
12秒前
13秒前
杨森omg完成签到,获得积分10
13秒前
脑洞疼应助moonlight采纳,获得10
13秒前
西岭发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148786
求助须知:如何正确求助?哪些是违规求助? 2799787
关于积分的说明 7837076
捐赠科研通 2457292
什么是DOI,文献DOI怎么找? 1307821
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663