Differently shaped Ag crystallites and four current transport paths at sintered Ag/Si interface of crystalline silicon solar cells

多晶硅 材料科学 熔块 微晶 欧姆接触 晶体硅 共发射极 蚀刻(微加工) 太阳能电池 外延 润湿 光电子学 纳米技术 复合材料 冶金 图层(电子) 薄膜晶体管
作者
Bowen Feng,Yaoping Liu,Wei Chen,Guoguang Xing,Xingqian Chen,Xiaolong Du
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier]
卷期号:257: 112381-112381 被引量:13
标识
DOI:10.1016/j.solmat.2023.112381
摘要

The comprehensive understanding of the Ohmic contact mechanism on the front metalization is highly desirable for further improvement of crystalline silicon solar cells performance. However, there are still controversial views about current transport paths between silver electrode and silicon emitter. To clarify this significant issue, we applied the selective acid etching (AE) process and the method of mechanical stripping process to prepare proper samples for direct observation of the Ag/Si contact interface. It is revealed that four kinds of Ag crystallites are grown with variant shapes and sizes on the pyramid tips, {111} planes, edges and tiny bumps at valleys of the textured Si surface resulting from anisotropic etching of Si emitter by the flowing molten glass frit during firing and the consequent epitaxially growth of Ag on the etching pits during cooling. All these Ag crystallites are in direct contact with Si emitter, serving as the most important contact points on the Si side. Meanwhile, three kinds of spherical Ag particles are formed in the resolidified glass frit during cooling which are crucial tunneling paths, conducting between glass-covered Ag crystallites on silicon and Ag bulk above. As a whole, four current transport paths are suggested mainly via Ag crystallites, Ag particles or both. In addition, the four electron transport paths are further confirmed by the Kelvin probe force microscopy characterization. The clarification and detailed understanding of all current transport paths are key points to design better silver paste and sintering process, and hence to improve the solar cell performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助superluckc采纳,获得10
2秒前
2秒前
飞云之下发布了新的文献求助30
2秒前
斯文败类应助细心的安珊采纳,获得10
2秒前
3秒前
李健的小迷弟应助小螃蟹采纳,获得10
3秒前
他们叫我小伟完成签到 ,获得积分10
4秒前
yv完成签到,获得积分10
5秒前
6秒前
6秒前
飞云之下完成签到,获得积分10
7秒前
王机智发布了新的文献求助10
7秒前
完美世界应助密西西比he采纳,获得10
8秒前
十六日呀发布了新的文献求助10
8秒前
流窜意识完成签到,获得积分10
8秒前
胡梦祥完成签到,获得积分10
8秒前
10秒前
七星茶发布了新的文献求助10
10秒前
123123123完成签到,获得积分10
10秒前
lilianan发布了新的文献求助10
12秒前
13秒前
晴心发布了新的文献求助10
13秒前
爱睡觉的猪完成签到,获得积分20
15秒前
微笑糖豆完成签到 ,获得积分10
15秒前
zzululu2024发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
20秒前
善学以致用应助季文婷采纳,获得10
20秒前
一颗荔枝完成签到,获得积分10
21秒前
Hello应助晴心采纳,获得10
21秒前
自觉的曼梅完成签到,获得积分20
26秒前
27秒前
密西西比he完成签到,获得积分10
28秒前
王机智完成签到,获得积分10
28秒前
李爱国应助Tigher采纳,获得30
30秒前
30秒前
30秒前
在水一方应助keyantong采纳,获得10
32秒前
愉快的牛氓完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741